Menu Close

If-x-2-2y-2-xy-then-prove-that-2x-2-y-2-xy-




Question Number 226471 by Rojarani last updated on 30/Nov/25
 If, x^2 +2y^2 ∞xy     then prove that, 2x^2 +y^2 ∞xy
$$\:{If},\:{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} \infty{xy}\: \\ $$$$\:\:{then}\:{prove}\:{that},\:\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \infty{xy} \\ $$
Commented by fantastic2 last updated on 30/Nov/25
Commented by fantastic2 last updated on 30/Nov/25
press on star icon.  then in the last row you   will see  ∝
$${press}\:{on}\:{star}\:{icon}. \\ $$$${then}\:{in}\:{the}\:{last}\:{row}\:{you}\: \\ $$$${will}\:{see} \\ $$$$\propto \\ $$
Answered by som(math1967) last updated on 30/Nov/25
 x^2 +2y^2 =kxy  ⇒((x^2 +2y^2 )/(2(√2)xy))=(k/(2(√2)))  ⇒((x^2 +2y^2 +2(√2)xy)/(x^2 +2y^2 −2(√2)xy))=((k+2(√2))/(k−2(√2)))  ⇒(((x+(√2)y)^2 )/((x−(√2)y)^2 ))=((k+2(√2))/(k−2(√2)))  ★  ⇒((x+(√2)y)/(x−(√2)y))=(√((k+2(√2))/(k−2(√2))))=k_1 (say)  ⇒(x/( (√2)y))=((k_1 +1)/(k_1 −1)) ★  ⇒(x/y)=(√2)×((k_1 +1)/(k_1 −1))=k_2  (say)  ∴x=k_2 y   Now ((2x^2 +y^2 )/(xy))=((2x^2 +x^2 k_2 ^2 )/(x^2 k_2 ))                   =((x^2 (2+k_2 ^2 ))/(x^2 k_2 ))=((2+k_2 ^2 )/k_2 )=constant  ∴2x^2 +y^2 ∝xy   ★ using componendo and   dividendo
$$\:{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} ={kxy} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{2}}{xy}}=\frac{{k}}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{2}}{xy}}{{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{xy}}=\frac{{k}+\mathrm{2}\sqrt{\mathrm{2}}}{{k}−\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\Rightarrow\frac{\left({x}+\sqrt{\mathrm{2}}{y}\right)^{\mathrm{2}} }{\left({x}−\sqrt{\mathrm{2}}{y}\right)^{\mathrm{2}} }=\frac{{k}+\mathrm{2}\sqrt{\mathrm{2}}}{{k}−\mathrm{2}\sqrt{\mathrm{2}}}\:\:\bigstar \\ $$$$\Rightarrow\frac{{x}+\sqrt{\mathrm{2}}{y}}{{x}−\sqrt{\mathrm{2}}{y}}=\sqrt{\frac{{k}+\mathrm{2}\sqrt{\mathrm{2}}}{{k}−\mathrm{2}\sqrt{\mathrm{2}}}}={k}_{\mathrm{1}} \left({say}\right) \\ $$$$\Rightarrow\frac{{x}}{\:\sqrt{\mathrm{2}}{y}}=\frac{{k}_{\mathrm{1}} +\mathrm{1}}{{k}_{\mathrm{1}} −\mathrm{1}}\:\bigstar \\ $$$$\Rightarrow\frac{{x}}{{y}}=\sqrt{\mathrm{2}}×\frac{{k}_{\mathrm{1}} +\mathrm{1}}{{k}_{\mathrm{1}} −\mathrm{1}}={k}_{\mathrm{2}} \:\left({say}\right) \\ $$$$\therefore{x}={k}_{\mathrm{2}} {y} \\ $$$$\:{Now}\:\frac{\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{xy}}=\frac{\mathrm{2}{x}^{\mathrm{2}} +{x}^{\mathrm{2}} {k}_{\mathrm{2}} ^{\mathrm{2}} }{{x}^{\mathrm{2}} {k}_{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{x}^{\mathrm{2}} \left(\mathrm{2}+{k}_{\mathrm{2}} ^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} {k}_{\mathrm{2}} }=\frac{\mathrm{2}+{k}_{\mathrm{2}} ^{\mathrm{2}} }{{k}_{\mathrm{2}} }={constant} \\ $$$$\therefore\mathrm{2}{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \propto{xy}\: \\ $$$$\bigstar\:\boldsymbol{{using}}\:\boldsymbol{{componendo}}\:\boldsymbol{{and}} \\ $$$$\:\boldsymbol{{dividendo}} \\ $$
Answered by AgniMath last updated on 30/Nov/25
x^2  + 2y^2  ∝ xy  ⇒ x^2  + 2y^2  = kxy  ⇒ x^2  − kxy + 2y^2  = 0    Divide both sides by y^2   ⇒ ((x/y))^2  − k.((x/y)) + 2 = 0   ⇒ (x/y) = ((k ± (√(k^2  − 8)))/2) = Constant  ⇒ x ∝ y  ⇒ x = my    ((2x^2  + y^2 )/(xy)) = ((2m^2 y^2  + y^2 )/(my^2 )) = ((2m^2  + 1)/m) =                                                                    Constant  ⇒ 2x^2  + y^(2 )  ∝ xy (Proved)
$${x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\mathrm{2}} \:\propto\:{xy} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{y}^{\mathrm{2}} \:=\:{kxy} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} \:−\:{kxy}\:+\:\mathrm{2}{y}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$ \\ $$$${Divide}\:{both}\:{sides}\:{by}\:{y}^{\mathrm{2}} \\ $$$$\Rightarrow\:\left(\frac{{x}}{{y}}\right)^{\mathrm{2}} \:−\:{k}.\left(\frac{{x}}{{y}}\right)\:+\:\mathrm{2}\:=\:\mathrm{0}\: \\ $$$$\Rightarrow\:\frac{{x}}{{y}}\:=\:\frac{{k}\:\pm\:\sqrt{{k}^{\mathrm{2}} \:−\:\mathrm{8}}}{\mathrm{2}}\:=\:{Constant} \\ $$$$\Rightarrow\:{x}\:\propto\:{y} \\ $$$$\Rightarrow\:{x}\:=\:{my} \\ $$$$ \\ $$$$\frac{\mathrm{2}{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }{{xy}}\:=\:\frac{\mathrm{2}{m}^{\mathrm{2}} {y}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} }{{my}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}{m}^{\mathrm{2}} \:+\:\mathrm{1}}{{m}}\:=\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Constant} \\ $$$$\Rightarrow\:\mathrm{2}{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}\:} \:\propto\:{xy}\:\left({Proved}\right) \\ $$
Commented by AgniMath last updated on 30/Nov/25
Try this for practice  If ax + by ∝ (√(xy)) then prove that  ax^2  + by^2  ∝ xy.
$${Try}\:{this}\:{for}\:{practice} \\ $$$${If}\:{ax}\:+\:{by}\:\propto\:\sqrt{{xy}}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${ax}^{\mathrm{2}} \:+\:{by}^{\mathrm{2}} \:\propto\:{xy}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *