Question Number 226536 by hardmath last updated on 02/Dec/25
![If (x+(2a^2 +5))(x−(2a^2 +7)) ≤ 0 x∈[−(a^2 +8a−10) ; (a^2 +9a−11)] Find: a = ?](https://www.tinkutara.com/question/Q226536.png)
$$\mathrm{If}\:\:\:\left(\mathrm{x}+\left(\mathrm{2a}^{\mathrm{2}} +\mathrm{5}\right)\right)\left(\mathrm{x}−\left(\mathrm{2a}^{\mathrm{2}} +\mathrm{7}\right)\right)\:\leqslant\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{x}\in\left[−\left(\mathrm{a}^{\mathrm{2}} +\mathrm{8a}−\mathrm{10}\right)\:;\:\left(\mathrm{a}^{\mathrm{2}} +\mathrm{9a}−\mathrm{11}\right)\right] \\ $$$$\mathrm{Find}:\:\boldsymbol{\mathrm{a}}\:=\:? \\ $$
Answered by gregori last updated on 02/Dec/25

$$\:\:\left(\mathrm{1}\right)\:−\mathrm{2}{a}^{\mathrm{2}} −\mathrm{5}\:=\:−{a}^{\mathrm{2}} −\mathrm{8}{a}+\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} −\mathrm{18}{a}+\mathrm{15}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\left({a}−\mathrm{3}\right)\left({a}−\mathrm{5}\right)=\:\mathrm{0} \\ $$$$\:\left(\mathrm{2}\right)\:\mathrm{2}{a}^{\mathrm{2}} +\mathrm{7}\:=\:{a}^{\mathrm{2}} +\mathrm{9}{a}−\mathrm{11}\: \\ $$$$\:\:\:\:\:\:\:\:{a}^{\mathrm{2}} −\mathrm{9}{a}\:+\mathrm{18}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\left({a}−\mathrm{3}\right)\left({a}−\mathrm{6}\right)=\mathrm{0} \\ $$$$\:\:\therefore\:{a}\:=\:\mathrm{3} \\ $$$$ \\ $$
Answered by mr W last updated on 03/Dec/25

$$−\left({a}^{\mathrm{2}} +\mathrm{8}{a}−\mathrm{10}\right)\leqslant{a}^{\mathrm{2}} +\mathrm{9}{a}−\mathrm{11} \\ $$$$\mathrm{2}{a}^{\mathrm{2}} +\mathrm{17}{a}−\mathrm{21}\geqslant\mathrm{0} \\ $$$$\Rightarrow{a}\leqslant\frac{−\mathrm{17}−\sqrt{\mathrm{457}}}{\mathrm{4}}\:{or}\:{a}\geqslant\frac{−\mathrm{17}+\sqrt{\mathrm{457}}}{\mathrm{4}}\:\:\:…\left({i}\right) \\ $$$$ \\ $$$$\mathrm{2}{a}^{\mathrm{2}} +\mathrm{5}\geqslant{a}^{\mathrm{2}} +\mathrm{8}{a}−\mathrm{10} \\ $$$${a}^{\mathrm{2}} −\mathrm{8}{a}+\mathrm{15}\geqslant\mathrm{0} \\ $$$$\left({a}−\mathrm{3}\right)\left({a}−\mathrm{5}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{a}\leqslant\mathrm{3},\:{a}\geqslant\mathrm{5}\:\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$$\mathrm{2}{a}^{\mathrm{2}} +\mathrm{7}\geqslant{a}^{\mathrm{2}} +\mathrm{9}{a}−\mathrm{11} \\ $$$${a}^{\mathrm{2}} −\mathrm{9}{a}+\mathrm{18}\geqslant\mathrm{0} \\ $$$$\left({a}−\mathrm{3}\right)\left({a}−\mathrm{6}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow{a}\leqslant\mathrm{3},\:{a}\geqslant\mathrm{6}\:\:\:\:…\left({iii}\right) \\ $$$$ \\ $$$${summary}: \\ $$$$\frac{\sqrt{\mathrm{457}}−\mathrm{17}}{\mathrm{4}}\leqslant{a}\leqslant\mathrm{3}\:{or}\:{a}\geqslant\mathrm{6}\:\:\checkmark \\ $$
Commented by hardmath last updated on 03/Dec/25

$$\mathrm{thankyou}\:\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{asnwer}:\mathrm{3} \\ $$
Commented by mr W last updated on 03/Dec/25

$${answer}\:{is}: \\ $$$$\frac{\sqrt{\mathrm{457}}−\mathrm{17}}{\mathrm{4}}\leqslant{a}\leqslant\mathrm{3}\:{or}\:{a}\geqslant\mathrm{6} \\ $$$${a}=\mathrm{3}\:{is}\:{only}\:{one}\:{of}\:{infinite}\:{many}\: \\ $$$${possbilities}. \\ $$
Commented by hardmath last updated on 03/Dec/25

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{professor} \\ $$