Menu Close

Question-226533




Question Number 226533 by mr W last updated on 02/Dec/25
Answered by mr W last updated on 03/Dec/25
cube roots of unit: 1, ω, ω^2   1+ω+ω^2 =0  e^x =Σ_(n=0) ^∞ (x^n /(n!))=Σ_(n=0) ^∞ (x^(3n) /((3n)!))+Σ_(n=0) ^∞ (x^(3n+1) /((3n+1)!))+Σ_(n=0) ^∞ (x^(3n+2) /((3n+2)!))  x=1:  e=Σ_(n=0) ^∞ (1/((3n)!))+Σ_(n=0) ^∞ (1/((3n+1)!))+Σ_(n=0) ^∞ (1/((3n+2)!))  e=A+B+C   ...(i)  x=ω:  e^ω =Σ_(n=0) ^∞ (1/((3n)!))+Σ_(n=0) ^∞ (ω/((3n+1)!))+Σ_(n=0) ^∞ (ω^2 /((3n+2)!))  e^ω =A+ωB+ω^2 C   ...(ii)  x=ω^2 :  e^ω^2  =Σ_(n=0) ^∞ (1/((3n)!))+Σ_(n=0) ^∞ (ω^2 /((3n+1)!))+Σ_(n=0) ^∞ (ω/((3n+2)!))  e^ω^2  =A+ω^2 B+ωC   ...(iii)  (i)+(ii)+(iii):  e+e^ω +e^ω^2  =3A+(1+ω+ω^2 )B+(1+ω+ω^2 )C  ⇒e+e^ω +e^ω^2  =3A  ⇒A=(1/3)(e+e^ω +e^ω^2  )  ⇒A=(1/3)(e+e^(−(1/2)+(((√3)i)/2)) +e^(−(1/2)−(((√3)i)/2)) )  ⇒A=(1/3)[e+(1/( (√e)))(e^(((√3)i)/2) +e^(−(((√3)i)/2)) )]  ⇒A=(1/3)(e+(2/( (√e))) cos ((√3)/2))  i.e. Σ_(n=0) ^∞ (1/((3n)!))=(1/3)(e+(2/( (√e))) cos ((√3)/2)) ✓
$${cube}\:{roots}\:{of}\:{unit}:\:\mathrm{1},\:\omega,\:\omega^{\mathrm{2}} \\ $$$$\mathrm{1}+\omega+\omega^{\mathrm{2}} =\mathrm{0} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}+\mathrm{1}} }{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}+\mathrm{2}} }{\left(\mathrm{3}{n}+\mathrm{2}\right)!} \\ $$$${x}=\mathrm{1}: \\ $$$${e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{2}\right)!} \\ $$$${e}={A}+{B}+{C}\:\:\:…\left({i}\right) \\ $$$${x}=\omega: \\ $$$${e}^{\omega} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\omega}{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\omega^{\mathrm{2}} }{\left(\mathrm{3}{n}+\mathrm{2}\right)!} \\ $$$${e}^{\omega} ={A}+\omega{B}+\omega^{\mathrm{2}} {C}\:\:\:…\left({ii}\right) \\ $$$${x}=\omega^{\mathrm{2}} : \\ $$$${e}^{\omega^{\mathrm{2}} } =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\omega^{\mathrm{2}} }{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\omega}{\left(\mathrm{3}{n}+\mathrm{2}\right)!} \\ $$$${e}^{\omega^{\mathrm{2}} } ={A}+\omega^{\mathrm{2}} {B}+\omega{C}\:\:\:…\left({iii}\right) \\ $$$$\left({i}\right)+\left({ii}\right)+\left({iii}\right): \\ $$$${e}+{e}^{\omega} +{e}^{\omega^{\mathrm{2}} } =\mathrm{3}{A}+\left(\mathrm{1}+\omega+\omega^{\mathrm{2}} \right){B}+\left(\mathrm{1}+\omega+\omega^{\mathrm{2}} \right){C} \\ $$$$\Rightarrow{e}+{e}^{\omega} +{e}^{\omega^{\mathrm{2}} } =\mathrm{3}{A} \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{3}}\left({e}+{e}^{\omega} +{e}^{\omega^{\mathrm{2}} } \right) \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{3}}\left({e}+{e}^{−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}} +{e}^{−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}} \right) \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{3}}\left[{e}+\frac{\mathrm{1}}{\:\sqrt{{e}}}\left({e}^{\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}} +{e}^{−\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}} \right)\right] \\ $$$$\Rightarrow{A}=\frac{\mathrm{1}}{\mathrm{3}}\left({e}+\frac{\mathrm{2}}{\:\sqrt{{e}}}\:\mathrm{cos}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$${i}.{e}.\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}=\frac{\mathrm{1}}{\mathrm{3}}\left({e}+\frac{\mathrm{2}}{\:\sqrt{{e}}}\:\mathrm{cos}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *