Menu Close

Formulate-the-differential-equation-of-the-solution-a-y-Ae-bx-1-b-y-Asin-x-Bcos-x-




Question Number 226603 by Spillover last updated on 07/Dec/25
Formulate the differential  equation of the solution  (a)y=Ae^(bx+1)   (b)y=Asin x+Bcos x
$${Formulate}\:{the}\:{differential} \\ $$$${equation}\:{of}\:{the}\:{solution} \\ $$$$\left({a}\right){y}={Ae}^{{bx}+\mathrm{1}} \\ $$$$\left({b}\right){y}={A}\mathrm{sin}\:{x}+{B}\mathrm{cos}\:{x} \\ $$$$ \\ $$
Answered by mr W last updated on 07/Dec/25
(a)  y′−by=0  (b)  y′′+y=0
$$\left({a}\right) \\ $$$${y}'−{by}=\mathrm{0} \\ $$$$\left({b}\right) \\ $$$${y}''+{y}=\mathrm{0} \\ $$
Commented by Spillover last updated on 07/Dec/25
thanks
$${thanks} \\ $$
Answered by Spillover last updated on 11/Dec/25
Solution 11/12/2025  y=Ae^(bx+1)   (dy/dx)=Aebe^(bx)   (dy/dx)=by  (1/y)(dy/dx)=b  (d/dx)((1/y)(dy/dx)=b)  (d^2 y/dx^2 )=(1/y)((dy/dx))^2
$${Solution}\:\mathrm{11}/\mathrm{12}/\mathrm{2025} \\ $$$${y}={Ae}^{{bx}+\mathrm{1}} \\ $$$$\frac{{dy}}{{dx}}={Aebe}^{{bx}} \\ $$$$\frac{{dy}}{{dx}}={by} \\ $$$$\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}={b} \\ $$$$\frac{{d}}{{dx}}\left(\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}={b}\right) \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\frac{\mathrm{1}}{{y}}\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \\ $$$$ \\ $$
Answered by Spillover last updated on 11/Dec/25
solution 11/12/2025  (b)y=Asin x+Bcos x  (dy/dx)=Acos x−Bsin x  (d^2 y/dx^2 )=−Asin x−Bcos x  (d^2 y/dx^2 )=−y  (d^2 y/dx^2 )+y=0
$${solution}\:\mathrm{11}/\mathrm{12}/\mathrm{2025} \\ $$$$\left({b}\right){y}={A}\mathrm{sin}\:{x}+{B}\mathrm{cos}\:{x} \\ $$$$\frac{{dy}}{{dx}}={A}\mathrm{cos}\:{x}−{B}\mathrm{sin}\:{x} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=−{A}\mathrm{sin}\:{x}−{B}\mathrm{cos}\:{x} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=−{y} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }+{y}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *