Menu Close

Question-226624




Question Number 226624 by Lara2440 last updated on 07/Dec/25
Commented by Lara2440 last updated on 07/Dec/25
   when rotate the tractrix about the Asymptote  it become a Pseudo-Sphere     Pseudo-Sphere is surface of revolving of the tractrix  paremetric by  v^→ (t)→(α(t−tanh(t)),α∙sech(t))  α>0 , t∈[0,∞)  and Precise Mapping X;R^2 →R^3  is  X^→ (u,v)→(r∙sech(u)cos(v),r∙sech(u)sin(v),u−tanh(u))     1. Show that Pseudo-Sphere Volume and Surface is Finite  1. Show that Pseudo-Sphere Gauss curvature K is always K<0  2. Prove Pseudo-Sphere is piecewise smoothly immersion in R^3
$$\: \\ $$$$\mathrm{when}\:\mathrm{rotate}\:\mathrm{the}\:\mathrm{tractrix}\:\mathrm{about}\:\mathrm{the}\:\mathrm{Asymptote} \\ $$$$\mathrm{it}\:\mathrm{become}\:\mathrm{a}\:\mathrm{Pseudo}-\mathrm{Sphere} \\ $$$$\: \\ $$$$\mathrm{Pseudo}-\mathrm{Sphere}\:\mathrm{is}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{revolving}\:\mathrm{of}\:\mathrm{the}\:\mathrm{tractrix} \\ $$$$\mathrm{paremetric}\:\mathrm{by}\:\:\overset{\rightarrow} {\boldsymbol{\mathrm{v}}}\left({t}\right)\rightarrow\left(\alpha\left({t}−\mathrm{tanh}\left({t}\right)\right),\alpha\centerdot\mathrm{sech}\left({t}\right)\right) \\ $$$$\alpha>\mathrm{0}\:,\:{t}\in\left[\mathrm{0},\infty\right) \\ $$$$\mathrm{and}\:\mathrm{Precise}\:\mathrm{Mapping}\:{X};\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}^{\mathrm{3}} \:\mathrm{is} \\ $$$$\overset{\rightarrow} {\boldsymbol{{X}}}\left({u},{v}\right)\rightarrow\left({r}\centerdot\mathrm{sech}\left({u}\right)\mathrm{cos}\left({v}\right),{r}\centerdot\mathrm{sech}\left({u}\right)\mathrm{sin}\left({v}\right),{u}−\mathrm{tanh}\left({u}\right)\right) \\ $$$$\: \\ $$$$\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{Pseudo}-\mathrm{Sphere}\:\mathrm{Volume}\:\mathrm{and}\:\mathrm{Surface}\:\mathrm{is}\:\mathrm{Finite} \\ $$$$\mathrm{1}.\:\mathrm{Show}\:\mathrm{that}\:\mathrm{Pseudo}-\mathrm{Sphere}\:\mathrm{Gauss}\:\mathrm{curvature}\:{K}\:\mathrm{is}\:\mathrm{always}\:{K}<\mathrm{0} \\ $$$$\mathrm{2}.\:\mathrm{Prove}\:\mathrm{Pseudo}-\mathrm{Sphere}\:\mathrm{is}\:\mathrm{piecewise}\:\mathrm{smoothly}\:\mathrm{immersion}\:\mathrm{in}\:\mathbb{R}^{\mathrm{3}} \: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *