Menu Close

if-log-8-a-log-4-b-2-5-amp-log-8-b-log-4-a-2-7-ab-




Question Number 226641 by fantastic2 last updated on 08/Dec/25
if log _8 a+log _4 b^2 =5  &  log _8^b +log _4 a^2 =7  ab=?
$${if}\:\mathrm{log}\:_{\mathrm{8}} {a}+\mathrm{log}\:_{\mathrm{4}} {b}^{\mathrm{2}} =\mathrm{5} \\ $$$$\& \\ $$$$\mathrm{log}\:_{\mathrm{8}} ^{{b}} +\mathrm{log}\:_{\mathrm{4}} {a}^{\mathrm{2}} =\mathrm{7} \\ $$$${ab}=? \\ $$
Commented by fantastic2 last updated on 08/Dec/25
pls ans. this came in my math  exam today.i got 512
$${pls}\:{ans}.\:{this}\:{came}\:{in}\:{my}\:{math} \\ $$$${exam}\:{today}.{i}\:{got}\:\mathrm{512} \\ $$
Answered by Ghisom_ last updated on 08/Dec/25
((ln a)/(3ln 2))+((ln b)/(ln 2))=5  ((ln b)/(3ln 2))+((ln a)/(ln 2))=5  2 linear equations for  (((ln a)),((ln b)) )  ⇒  ln a =6ln 2 ∧ln b =3ln 2  a=64∧b=8  ab=512
$$\frac{\mathrm{ln}\:{a}}{\mathrm{3ln}\:\mathrm{2}}+\frac{\mathrm{ln}\:{b}}{\mathrm{ln}\:\mathrm{2}}=\mathrm{5} \\ $$$$\frac{\mathrm{ln}\:{b}}{\mathrm{3ln}\:\mathrm{2}}+\frac{\mathrm{ln}\:{a}}{\mathrm{ln}\:\mathrm{2}}=\mathrm{5} \\ $$$$\mathrm{2}\:\mathrm{linear}\:\mathrm{equations}\:\mathrm{for}\:\begin{pmatrix}{\mathrm{ln}\:{a}}\\{\mathrm{ln}\:{b}}\end{pmatrix} \\ $$$$\Rightarrow \\ $$$$\mathrm{ln}\:{a}\:=\mathrm{6ln}\:\mathrm{2}\:\wedge\mathrm{ln}\:{b}\:=\mathrm{3ln}\:\mathrm{2} \\ $$$${a}=\mathrm{64}\wedge{b}=\mathrm{8} \\ $$$${ab}=\mathrm{512} \\ $$
Commented by fantastic2 last updated on 08/Dec/25
thank you
$${thank}\:{you} \\ $$
Answered by fantastic2 last updated on 08/Dec/25
log _8 a+log _4 b^2 =5  ⇒(1/3)log _2 a+(2/2)log _2 b=5  ⇒log _2 a^(1/3) b=5⇒32=a^(1/3) b ..i  log _8^b +log _4 a^2 =7  ⇒(1/3)log _2 b+(2/2)log _2 a=7  ⇒log _2 b^(1/3) a=7⇒ab^(1/3) =128...ii  i×ii  128×32=(ab)^(4/3)   ⇒ab=2^(12×(3/4)) =2^9 =512
$$\mathrm{log}\:_{\mathrm{8}} {a}+\mathrm{log}\:_{\mathrm{4}} {b}^{\mathrm{2}} =\mathrm{5} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}\mathrm{log}\:_{\mathrm{2}} {a}+\frac{\mathrm{2}}{\mathrm{2}}\mathrm{log}\:_{\mathrm{2}} {b}=\mathrm{5} \\ $$$$\Rightarrow\mathrm{log}\:_{\mathrm{2}} {a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}=\mathrm{5}\Rightarrow\mathrm{32}={a}^{\frac{\mathrm{1}}{\mathrm{3}}} {b}\:..{i} \\ $$$$\mathrm{log}\:_{\mathrm{8}} ^{{b}} +\mathrm{log}\:_{\mathrm{4}} {a}^{\mathrm{2}} =\mathrm{7} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}\mathrm{log}\:_{\mathrm{2}} {b}+\frac{\mathrm{2}}{\mathrm{2}}\mathrm{log}\:_{\mathrm{2}} {a}=\mathrm{7} \\ $$$$\Rightarrow\mathrm{log}\:_{\mathrm{2}} {b}^{\frac{\mathrm{1}}{\mathrm{3}}} {a}=\mathrm{7}\Rightarrow{ab}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{128}…{ii} \\ $$$${i}×{ii} \\ $$$$\mathrm{128}×\mathrm{32}=\left({ab}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} \\ $$$$\Rightarrow{ab}=\mathrm{2}^{\mathrm{12}×\frac{\mathrm{3}}{\mathrm{4}}} =\mathrm{2}^{\mathrm{9}} =\mathrm{512} \\ $$
Commented by fantastic2 last updated on 08/Dec/25
i did it like this
$${i}\:{did}\:{it}\:{like}\:{this} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *