Menu Close

Find-0-4-dx-1-sin-2-x-




Question Number 226728 by hardmath last updated on 11/Dec/25
Find:   ∫_0 ^( (𝛑/4))  (dx/(1 + sin^2 x)) = ?
$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\:=\:? \\ $$
Answered by Ghisom_ last updated on 12/Dec/25
thereβ€²s an easy but boring solution using  t=tan x  this is more interesting:  ∫_0 ^(Ο€/2) (dx/(1+sin^2  x))=       [t=arcsin ((1βˆ’3sin^2  x)/(1+sin^2  x)) β†’ dx=βˆ’(((1+sin^2  x)(√2))/4)dt]  =βˆ’((√2)/4) ∫_(Ο€/2) ^(βˆ’arcsin (1/3)) dt=βˆ’((√2)/4)[t]_(Ο€/2) ^(βˆ’arcsin (1/3)) =  =((√2)/8)Ο€+((√2)/4)arcsin (1/3)
$$\mathrm{there}'\mathrm{s}\:\mathrm{an}\:\mathrm{easy}\:\mathrm{but}\:\mathrm{boring}\:\mathrm{solution}\:\mathrm{using} \\ $$$${t}=\mathrm{tan}\:{x} \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{more}\:\mathrm{interesting}: \\ $$$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dx}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{arcsin}\:\frac{\mathrm{1}βˆ’\mathrm{3sin}^{\mathrm{2}} \:{x}}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}}\:\rightarrow\:{dx}=βˆ’\frac{\left(\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:{x}\right)\sqrt{\mathrm{2}}}{\mathrm{4}}{dt}\right] \\ $$$$=βˆ’\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:\underset{\pi/\mathrm{2}} {\overset{βˆ’\mathrm{arcsin}\:\left(\mathrm{1}/\mathrm{3}\right)} {\int}}{dt}=βˆ’\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\left[{t}\right]_{\pi/\mathrm{2}} ^{βˆ’\mathrm{arcsin}\:\left(\mathrm{1}/\mathrm{3}\right)} = \\ $$$$=\frac{\sqrt{\mathrm{2}}}{\mathrm{8}}\pi+\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\mathrm{arcsin}\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Answered by mathmax last updated on 13/Dec/25
I=∫_0 ^(Ο€/4) (dx/(1+((1βˆ’cos(2x))/2)))dx=∫_0 ^(Ο€/4) ((2dx)/(3βˆ’cos(2x)))(2x=t)  =∫_0 ^(Ο€/2) (dt/(3βˆ’cost))  (tan((t/2))=u)  =∫_0 ^1 ((2du)/((1+u^2 )(3βˆ’((1βˆ’u^2 )/(1+u^2 )))))=∫_0 ^1 ((2du)/(3+3u^2 βˆ’1+u^2 ))  =∫_0 ^1 ((2du)/(4u^2 +2))=∫_0 ^1 (du/(2u^2 +1))  ((√2)u=z)  =∫_0 ^(√2)   (dz/( (√2)(z^2 +1)))=(1/( (√2)))[arctanz]_0 ^(√2)   =((arctan((√2)))/( (√2)))
$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{\mathrm{1}+\frac{\mathrm{1}βˆ’{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}}}{dx}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{2}{dx}}{\mathrm{3}βˆ’{cos}\left(\mathrm{2}{x}\right)}\left(\mathrm{2}{x}={t}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dt}}{\mathrm{3}βˆ’{cost}}\:\:\left({tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{3}βˆ’\frac{\mathrm{1}βˆ’{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{du}}{\mathrm{3}+\mathrm{3}{u}^{\mathrm{2}} βˆ’\mathrm{1}+{u}^{\mathrm{2}} } \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{du}}{\mathrm{4}{u}^{\mathrm{2}} +\mathrm{2}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{du}}{\mathrm{2}{u}^{\mathrm{2}} +\mathrm{1}}\:\:\left(\sqrt{\mathrm{2}}{u}={z}\right) \\ $$$$=\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:\:\frac{{dz}}{\:\sqrt{\mathrm{2}}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\left[{arctanz}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \\ $$$$=\frac{{arctan}\left(\sqrt{\mathrm{2}}\right)}{\:\sqrt{\mathrm{2}}} \\ $$
Commented by Ghisom_ last updated on 13/Dec/25
itβ€²s not necessary to first change  cos 2x to cos t and then use t=2arctan u  instead use cos 2x and x=arctan t and get  the same result with 1 step less
$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:\mathrm{necessary}\:\mathrm{to}\:\mathrm{first}\:\mathrm{change} \\ $$$$\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{to}\:\mathrm{cos}\:{t}\:\mathrm{and}\:\mathrm{then}\:\mathrm{use}\:{t}=\mathrm{2arctan}\:{u} \\ $$$$\mathrm{instead}\:\mathrm{use}\:\mathrm{cos}\:\mathrm{2}{x}\:\mathrm{and}\:{x}=\mathrm{arctan}\:{t}\:\mathrm{and}\:\mathrm{get} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{result}\:\mathrm{with}\:\mathrm{1}\:\mathrm{step}\:\mathrm{less} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *