Question Number 226721 by Spillover last updated on 11/Dec/25

Answered by breniam last updated on 11/Dec/25
![x^2 +y^2 +2xyy′=0 t=ln∣x∣ x=e^t y(x)=z(t) (dy/dx)=(dz/dt)×(dt/dx)=(dz/dt)×(1/x) e^(2t) +z^2 +2zz′=0 z^2 +2zz′=−e^(2t) z(z+2z′)=−e^(2t) z=ab z′=a′b+ab′ ab[a(2b′+b)+2a′b]=e^(−2t) 2b′+b=0 ((b′)/b)=−(1/2) ∫((b′)/b)dt=−(1/2)t+C={u=b} ∫(1/u)du=−(1/2)t+C ln∣u∣=−(1/2)t+C b=u=Ae^(−(1/2)t) 2ae^(−t) a′=e^(−2t) 2a′a=e^(−t) 2∫a′adt=−e^(−t) +C_1 ={u=a}= 2∫udu=u^2 =a^2 =−e^(−t) +C_1 a=±(√(C_1 −e^(−t) )) z=ab=e^(−(1/2)t) (√(C_1 −e^(−t) )) z(t)=y(x) t=ln ∣x∣ y=(√((C_1 −(1/x))/x))](https://www.tinkutara.com/question/Q226722.png)
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xyy}'=\mathrm{0} \\ $$$${t}=\mathrm{ln}\mid{x}\mid \\ $$$${x}={e}^{{t}} \\ $$$${y}\left({x}\right)={z}\left({t}\right) \\ $$$$\frac{\mathrm{d}{y}}{\mathrm{d}{x}}=\frac{\mathrm{d}{z}}{\mathrm{d}{t}}×\frac{\mathrm{d}{t}}{\mathrm{d}{x}}=\frac{\mathrm{d}{z}}{\mathrm{d}{t}}×\frac{\mathrm{1}}{{x}} \\ $$$${e}^{\mathrm{2}{t}} +{z}^{\mathrm{2}} +\mathrm{2}{zz}'=\mathrm{0} \\ $$$${z}^{\mathrm{2}} +\mathrm{2}{zz}'=−{e}^{\mathrm{2}{t}} \\ $$$${z}\left({z}+\mathrm{2}{z}'\right)=−{e}^{\mathrm{2}{t}} \\ $$$${z}={ab} \\ $$$${z}'={a}'{b}+{ab}' \\ $$$${ab}\left[{a}\left(\mathrm{2}{b}'+{b}\right)+\mathrm{2}{a}'{b}\right]={e}^{−\mathrm{2}{t}} \\ $$$$\mathrm{2}{b}'+{b}=\mathrm{0} \\ $$$$\frac{{b}'}{{b}}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\int\frac{{b}'}{{b}}\mathrm{d}{t}=−\frac{\mathrm{1}}{\mathrm{2}}{t}+{C}=\left\{{u}={b}\right\} \\ $$$$\int\frac{\mathrm{1}}{{u}}\mathrm{d}{u}=−\frac{\mathrm{1}}{\mathrm{2}}{t}+{C} \\ $$$$\mathrm{ln}\mid{u}\mid=−\frac{\mathrm{1}}{\mathrm{2}}{t}+{C} \\ $$$${b}={u}={Ae}^{−\frac{\mathrm{1}}{\mathrm{2}}{t}} \\ $$$$\mathrm{2}{ae}^{−{t}} {a}'={e}^{−\mathrm{2}{t}} \\ $$$$\mathrm{2}{a}'{a}={e}^{−{t}} \\ $$$$\mathrm{2}\int{a}'{a}\mathrm{d}{t}=−{e}^{−{t}} +{C}_{\mathrm{1}} =\left\{{u}={a}\right\}= \\ $$$$\mathrm{2}\int{u}\mathrm{d}{u}={u}^{\mathrm{2}} ={a}^{\mathrm{2}} =−{e}^{−{t}} +{C}_{\mathrm{1}} \\ $$$${a}=\pm\sqrt{{C}_{\mathrm{1}} −{e}^{−{t}} } \\ $$$${z}={ab}={e}^{−\frac{\mathrm{1}}{\mathrm{2}}{t}} \sqrt{{C}_{\mathrm{1}} −{e}^{−{t}} } \\ $$$${z}\left({t}\right)={y}\left({x}\right) \\ $$$${t}=\mathrm{ln}\:\mid{x}\mid \\ $$$${y}=\sqrt{\frac{{C}_{\mathrm{1}} −\frac{\mathrm{1}}{{x}}}{{x}}} \\ $$
Answered by mr W last updated on 11/Dec/25

$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{x}\frac{{d}\left({y}^{\mathrm{2}} \right)}{{dx}}=\mathrm{0} \\ $$$${let}\:{z}={y}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{z}+{x}\frac{{dz}}{{dx}}=\mathrm{0} \\ $$$$\frac{{dz}}{{dx}}+\frac{{z}}{{x}}=−{x}\:\:\:\:\:\:\left({type}\:{y}'+{p}\left({x}\right){y}={q}\left({x}\right)\right) \\ $$$$\int\frac{{dx}}{{x}}=\mathrm{ln}\:{x} \\ $$$${u}={e}^{\int\frac{{dx}}{{x}}} ={e}^{\mathrm{ln}\:{x}} ={x} \\ $$$${zu}=\int{x}×\left(−{x}\right){dx}=−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+{C} \\ $$$${z}=\frac{\mathrm{1}}{{u}}\left(−\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+{C}\right)=−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}+\frac{{C}}{{x}}\: \\ $$$${i}.{e}.\:{y}^{\mathrm{2}} =−\frac{{x}^{\mathrm{2}} }{\mathrm{3}}+\frac{{C}}{{x}}\:\checkmark \\ $$
Commented by mr W last updated on 11/Dec/25

$${check}: \\ $$$$\mathrm{2}{yy}'=−\frac{\mathrm{2}{x}}{\mathrm{3}}−\frac{{C}}{{x}^{\mathrm{2}} } \\ $$$$\mathrm{2}{xyy}'=−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{C}}{{x}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xyy}'={x}^{\mathrm{2}} −\frac{{x}^{\mathrm{2}} }{\mathrm{3}}+\frac{{C}}{{x}}−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\mathrm{3}}−\frac{{C}}{{x}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{2}{xyy}'=\mathrm{0}\:\checkmark \\ $$
Answered by Simurdiera last updated on 11/Dec/25
