Menu Close

By-using-concept-of-complex-number-show-that-tan-5-tan-5-10tan-3-5tan-5tan-4-10tan-2-1-




Question Number 226780 by Spillover last updated on 14/Dec/25
By using concept of complex  number  show that  tan 5θ=((tan^5 θ−10tan^3 θ+5tan θ)/(5tan^4 θ−10tan^2 θ+1))
$${By}\:{using}\:{concept}\:{of}\:{complex} \\ $$$${number} \\ $$$${show}\:{that} \\ $$$$\mathrm{tan}\:\mathrm{5}\theta=\frac{\mathrm{tan}\:^{\mathrm{5}} \theta−\mathrm{10tan}\:^{\mathrm{3}} \theta+\mathrm{5tan}\:\theta}{\mathrm{5tan}\:^{\mathrm{4}} \theta−\mathrm{10tan}\:^{\mathrm{2}} \theta+\mathrm{1}} \\ $$
Answered by Frix last updated on 14/Dec/25
tan θ =((1−e^(2iθ) )/(1+e^(2iθ) ))i=t  ((t^5 −10t^3 +5t)/(5t^4 −10t^2 +1))=((1−e^(10iθ) )/(1+e^(10iθ) ))i=((1−e^(2i(5θ)) )/(1+e^(2i(5θ)) ))i=tan 5θ
$$\mathrm{tan}\:\theta\:=\frac{\mathrm{1}−\mathrm{e}^{\mathrm{2i}\theta} }{\mathrm{1}+\mathrm{e}^{\mathrm{2i}\theta} }\mathrm{i}={t} \\ $$$$\frac{\mathrm{t}^{\mathrm{5}} −\mathrm{10}{t}^{\mathrm{3}} +\mathrm{5}{t}}{\mathrm{5}{t}^{\mathrm{4}} −\mathrm{10}{t}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}−\mathrm{e}^{\mathrm{10i}\theta} }{\mathrm{1}+\mathrm{e}^{\mathrm{10i}\theta} }\mathrm{i}=\frac{\mathrm{1}−\mathrm{e}^{\mathrm{2i}\left(\mathrm{5}\theta\right)} }{\mathrm{1}+\mathrm{e}^{\mathrm{2i}\left(\mathrm{5}\theta\right)} }\mathrm{i}=\mathrm{tan}\:\mathrm{5}\theta \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *