Menu Close

Differentiate-x-x-x-




Question Number 226820 by Spillover last updated on 16/Dec/25
       Differentiate    x^x^x
$$ \\ $$$$\:\:\:\:\:{Differentiate}\:\:\:\:{x}^{{x}^{{x}} } \\ $$$$ \\ $$
Answered by AgniMath last updated on 16/Dec/25
y=x^x^x    ⇒lny=x^x lnx  ⇒(1/y)(dy/dx)=x^x .(1/x)+x^x (1+lnx)lnx  ⇒(dy/dx)=x^x^x  (x^x ((1/x)+lnx+(lnx)^2 ))
$${y}={x}^{{x}^{{x}} } \\ $$$$\Rightarrow{lny}={x}^{{x}} {lnx} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{y}}\frac{{dy}}{{dx}}={x}^{{x}} .\frac{\mathrm{1}}{{x}}+{x}^{{x}} \left(\mathrm{1}+{lnx}\right){lnx} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}={x}^{{x}^{{x}} } \left({x}^{{x}} \left(\frac{\mathrm{1}}{{x}}+{lnx}+\left({lnx}\right)^{\mathrm{2}} \right)\right) \\ $$
Commented by Spillover last updated on 16/Dec/25
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *