Menu Close

Question-226882




Question Number 226882 by hardmath last updated on 17/Dec/25
Answered by breniam last updated on 17/Dec/25
=lim_(n→∞) (n/( (((2^(n+1) )^(1/n) −1)/( (2)^(1/n) −1))))=lim_(n→∞) ((n((2)^(1/n) −1))/(2(2)^(1/n) −1))  lim_(n→∞) (2(2)^(1/n) −1)=2−1=1  lim_(x→∞) x(2^(1/x) −1)=lim_(x→∞) ((2^(1/x) −1)/(1/x))=^H ln(2)lim_(x→∞) ((2^(1/x) ×(1/x^2 ))/(1/x^2 ))=ln(2)×lim_(x→∞) 2^(1/x) =ln(2)
$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}}{\:\frac{\sqrt[{{n}}]{\mathrm{2}^{{n}+\mathrm{1}} }−\mathrm{1}}{\:\sqrt[{{n}}]{\mathrm{2}}−\mathrm{1}}}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}\left(\sqrt[{{n}}]{\mathrm{2}}−\mathrm{1}\right)}{\mathrm{2}\sqrt[{{n}}]{\mathrm{2}}−\mathrm{1}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{2}\sqrt[{{n}}]{\mathrm{2}}−\mathrm{1}\right)=\mathrm{2}−\mathrm{1}=\mathrm{1} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}{x}\left(\mathrm{2}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}}{\frac{\mathrm{1}}{{x}}}\overset{{H}} {=}\mathrm{ln}\left(\mathrm{2}\right)\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{2}^{\frac{\mathrm{1}}{{x}}} ×\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}=\mathrm{ln}\left(\mathrm{2}\right)×\underset{{x}\rightarrow\infty} {\mathrm{lim}2}^{\frac{\mathrm{1}}{{x}}} =\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *