Menu Close

Question-226908




Question Number 226908 by mr W last updated on 18/Dec/25
Commented by mr W last updated on 18/Dec/25
find the area of the circle.
$${find}\:{the}\:{area}\:{of}\:{the}\:{circle}. \\ $$
Answered by A5T last updated on 19/Dec/25
Let ∣AB∣=4 and ∣CD∣=2; let AD∩BC=E  Q225840 ⇒ CE^2 +EB^2 +EA^2 +ED^2 =4R^2   But CE^2 +ED^2 =2^2  and EA^2 +EB^2 =4^2   ⇒4R^2 =2^2 +4^2 =20 ⇒ Area=5π
$$\mathrm{Let}\:\mid\mathrm{AB}\mid=\mathrm{4}\:\mathrm{and}\:\mid\mathrm{CD}\mid=\mathrm{2};\:\mathrm{let}\:\mathrm{AD}\cap\mathrm{BC}=\mathrm{E} \\ $$$$\mathrm{Q225840}\:\Rightarrow\:\mathrm{CE}^{\mathrm{2}} +\mathrm{EB}^{\mathrm{2}} +\mathrm{EA}^{\mathrm{2}} +\mathrm{ED}^{\mathrm{2}} =\mathrm{4R}^{\mathrm{2}} \\ $$$$\mathrm{But}\:\mathrm{CE}^{\mathrm{2}} +\mathrm{ED}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{EA}^{\mathrm{2}} +\mathrm{EB}^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{4R}^{\mathrm{2}} =\mathrm{2}^{\mathrm{2}} +\mathrm{4}^{\mathrm{2}} =\mathrm{20}\:\Rightarrow\:\mathrm{Area}=\mathrm{5}\pi \\ $$
Commented by mr W last updated on 20/Dec/25
��

Leave a Reply

Your email address will not be published. Required fields are marked *