Menu Close

202519-2025-




Question Number 227154 by gregori last updated on 03/Jan/26
 (202519)^(2025)
$$ \left(\mathrm{202519}\right)^{\mathrm{2025}} \: \\ $$$$\: \\ $$
Answered by mahdipoor last updated on 03/Jan/26
202519≡−2   mod(17)  (−2)^5 ≡2 ⇒ (2)^5 ≡−2  ⇒ (−2)^(25) ≡−2  (−2)^9 ≡−2 ⇒ (−2)^(81) ≡−2  ⇒(−2)^(2025) =(−2)^(25×81) ≡(−2)^(81) ≡−2≡15
$$\mathrm{202519}\equiv−\mathrm{2}\:\:\:\mathrm{mod}\left(\mathrm{17}\right) \\ $$$$\left(−\mathrm{2}\right)^{\mathrm{5}} \equiv\mathrm{2}\:\Rightarrow\:\left(\mathrm{2}\right)^{\mathrm{5}} \equiv−\mathrm{2}\:\:\Rightarrow\:\left(−\mathrm{2}\right)^{\mathrm{25}} \equiv−\mathrm{2} \\ $$$$\left(−\mathrm{2}\right)^{\mathrm{9}} \equiv−\mathrm{2}\:\Rightarrow\:\left(−\mathrm{2}\right)^{\mathrm{81}} \equiv−\mathrm{2} \\ $$$$\Rightarrow\left(−\mathrm{2}\right)^{\mathrm{2025}} =\left(−\mathrm{2}\right)^{\mathrm{25}×\mathrm{81}} \equiv\left(−\mathrm{2}\right)^{\mathrm{81}} \equiv−\mathrm{2}\equiv\mathrm{15} \\ $$
Answered by AgniMath last updated on 04/Jan/26
gcd(202519,17)=1  according to carmichael theorem :  λ(17)=16  Reduce base and exponent  (202519)^(2025)  mod 17 ≡ (−2)^9  mod 17  ≡ −2+17=15
$${gcd}\left(\mathrm{202519},\mathrm{17}\right)=\mathrm{1} \\ $$$${according}\:{to}\:{carmichael}\:{theorem}\:: \\ $$$$\lambda\left(\mathrm{17}\right)=\mathrm{16} \\ $$$${Reduce}\:{base}\:{and}\:{exponent} \\ $$$$\left(\mathrm{202519}\right)^{\mathrm{2025}} \:{mod}\:\mathrm{17}\:\equiv\:\left(−\mathrm{2}\right)^{\mathrm{9}} \:{mod}\:\mathrm{17} \\ $$$$\equiv\:−\mathrm{2}+\mathrm{17}=\mathrm{15} \\ $$
Answered by mehdee7396 last updated on 04/Jan/26
202519≡_(17) −2⇒(202519)^4 ≡_(27) −1  (202519)^(2024) ≡_(17) 1⇒(201519)^(2025) ≡_(17) −2≡_(17) 15
$$\mathrm{202519}\underset{\mathrm{17}} {\equiv}−\mathrm{2}\Rightarrow\left(\mathrm{202519}\right)^{\mathrm{4}} \underset{\mathrm{27}} {\equiv}−\mathrm{1} \\ $$$$\left(\mathrm{202519}\right)^{\mathrm{2024}} \underset{\mathrm{17}} {\equiv}\mathrm{1}\Rightarrow\left(\mathrm{201519}\right)^{\mathrm{2025}} \underset{\mathrm{17}} {\equiv}−\mathrm{2}\underset{\mathrm{17}} {\equiv}\mathrm{15} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *