Menu Close

Solve-the-equation-x-2-dy-dx-y-x-2-3-given-y-10-when-x-4-4-1-2026-




Question Number 227174 by Spillover last updated on 04/Jan/26
Solve the equation  (x−2)(dy/dx)−y=(x−2)^3   given y=10  when x=4.  4/1/2026
$${Solve}\:{the}\:{equation} \\ $$$$\left(\boldsymbol{{x}}−\mathrm{2}\right)\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}−\boldsymbol{{y}}=\left(\boldsymbol{{x}}−\mathrm{2}\right)^{\mathrm{3}} \\ $$$$\boldsymbol{{given}}\:\boldsymbol{{y}}=\mathrm{10}\:\:\boldsymbol{{when}}\:\boldsymbol{{x}}=\mathrm{4}. \\ $$$$\mathrm{4}/\mathrm{1}/\mathrm{2026} \\ $$
Answered by AgniMath last updated on 04/Jan/26
(x−2)(dy/dx)−y=(x−2)^3   ⇒ (dy/dx)−(1/(x−2)) . y=(x−2)^2   IF = e^(−∫(1/(x−2))dx) =e^(−ln(x−2)) =(1/(x−2))  (1/(x−2)) y=∫(1/(x−2))(x−2)^3 dx  ⇒ (1/(x−2))y=(x^2 /2)−2x+C  ⇒y=(x−2)((x^2 /2)−2x)+(x−2)C  y=10 when x=4  ⇒ 2C=10 ⇒C=5  ∴ y=(x−2)((x^2 /2)−2x)+5(x−2)  =(x^3 /2)−3x^2 +9x−10  (Ans)
$$\left({x}−\mathrm{2}\right)\frac{{dy}}{{dx}}−{y}=\left({x}−\mathrm{2}\right)^{\mathrm{3}} \\ $$$$\Rightarrow\:\frac{{dy}}{{dx}}−\frac{\mathrm{1}}{{x}−\mathrm{2}}\:.\:{y}=\left({x}−\mathrm{2}\right)^{\mathrm{2}} \\ $$$${IF}\:=\:{e}^{−\int\frac{\mathrm{1}}{{x}−\mathrm{2}}{dx}} ={e}^{−{ln}\left({x}−\mathrm{2}\right)} =\frac{\mathrm{1}}{{x}−\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{{x}−\mathrm{2}}\:{y}=\int\frac{\mathrm{1}}{{x}−\mathrm{2}}\left({x}−\mathrm{2}\right)^{\mathrm{3}} {dx} \\ $$$$\Rightarrow\:\frac{\mathrm{1}}{{x}−\mathrm{2}}{y}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{x}+{C} \\ $$$$\Rightarrow{y}=\left({x}−\mathrm{2}\right)\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{x}\right)+\left({x}−\mathrm{2}\right){C} \\ $$$${y}=\mathrm{10}\:{when}\:{x}=\mathrm{4} \\ $$$$\Rightarrow\:\mathrm{2}{C}=\mathrm{10}\:\Rightarrow{C}=\mathrm{5} \\ $$$$\therefore\:{y}=\left({x}−\mathrm{2}\right)\left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\mathrm{2}{x}\right)+\mathrm{5}\left({x}−\mathrm{2}\right) \\ $$$$=\frac{{x}^{\mathrm{3}} }{\mathrm{2}}−\mathrm{3}{x}^{\mathrm{2}} +\mathrm{9}{x}−\mathrm{10}\:\:\left({Ans}\right) \\ $$
Commented by Spillover last updated on 04/Jan/26
correct
$${correct} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *