Menu Close

Solve-x-2-xy-dy-dx-xy-y-2-6-1-2026-




Question Number 227221 by Spillover last updated on 06/Jan/26
Solve             (x^2 +xy)(dy/dx)=xy−y^2           6/1/2026
$${Solve}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\left({x}^{\mathrm{2}} +{xy}\right)\frac{{dy}}{{dx}}={xy}−{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{6}/\mathrm{1}/\mathrm{2026} \\ $$
Answered by som(math1967) last updated on 07/Jan/26
 (dy/dx)=((xy−y^2 )/(x^2 +xy))   put y=vx⇒(dy/dx)=v+x(dv/dx)   v+x(dv/dx)=((vx^2 −v^2 x^2 )/(x^2 +x^2 v))  ⇒v+x(dv/dx)=((vx^2 (1−v))/(x^2 (1+v)))  ⇒x(dv/dx)=((v−v^2 −v−v^2 )/((1+v)))  ⇒∫(((1+v)dv)/(2v^2 ))=−∫(dx/x)  ⇒∫(dv/(2v^2 ))+(1/2)∫(dv/v)+∫(dx/x)=0  ⇒−(1/(2v))+ln(√v)+lnx=C    where v=(y/x)
$$\:\frac{{dy}}{{dx}}=\frac{{xy}−{y}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{xy}} \\ $$$$\:{put}\:{y}={vx}\Rightarrow\frac{{dy}}{{dx}}={v}+{x}\frac{{dv}}{{dx}} \\ $$$$\:{v}+{x}\frac{{dv}}{{dx}}=\frac{{vx}^{\mathrm{2}} −{v}^{\mathrm{2}} {x}^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}^{\mathrm{2}} {v}} \\ $$$$\Rightarrow{v}+{x}\frac{{dv}}{{dx}}=\frac{{vx}^{\mathrm{2}} \left(\mathrm{1}−{v}\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}+{v}\right)} \\ $$$$\Rightarrow{x}\frac{{dv}}{{dx}}=\frac{{v}−{v}^{\mathrm{2}} −{v}−{v}^{\mathrm{2}} }{\left(\mathrm{1}+{v}\right)} \\ $$$$\Rightarrow\int\frac{\left(\mathrm{1}+{v}\right){dv}}{\mathrm{2}{v}^{\mathrm{2}} }=−\int\frac{{dx}}{{x}} \\ $$$$\Rightarrow\int\frac{{dv}}{\mathrm{2}{v}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dv}}{{v}}+\int\frac{{dx}}{{x}}=\mathrm{0} \\ $$$$\Rightarrow−\frac{\mathrm{1}}{\mathrm{2}{v}}+{ln}\sqrt{{v}}+{lnx}={C} \\ $$$$\:\:{where}\:{v}=\frac{{y}}{{x}} \\ $$
Commented by Spillover last updated on 07/Jan/26
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *