Menu Close

Solve-x-dy-dx-y-x-3-6-1-2026-




Question Number 227222 by Spillover last updated on 06/Jan/26
    Solve         x(dy/dx)+y=x^3         6/1/2026
$$\:\:\:\:{Solve} \\ $$$$\:\:\:\:\:\:\:{x}\frac{{dy}}{{dx}}+{y}={x}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\mathrm{6}/\mathrm{1}/\mathrm{2026} \\ $$$$ \\ $$
Answered by som(math1967) last updated on 07/Jan/26
x(dy/dx) +y=x^3   ⇒(dy/dx) +(y/x)=x^2    IF=e^(∫(dx/x)) =e^(lnx) =x  ⇒x(dy/dx) +y=x^3   ⇒∫d(xy)=∫x^3 dx   ∴xy=(x^4 /4)+c
$${x}\frac{{dy}}{{dx}}\:+{y}={x}^{\mathrm{3}} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}\:+\frac{{y}}{{x}}={x}^{\mathrm{2}} \\ $$$$\:{IF}={e}^{\int\frac{{dx}}{{x}}} ={e}^{{lnx}} ={x} \\ $$$$\Rightarrow{x}\frac{{dy}}{{dx}}\:+{y}={x}^{\mathrm{3}} \\ $$$$\Rightarrow\int{d}\left({xy}\right)=\int{x}^{\mathrm{3}} {dx} \\ $$$$\:\therefore{xy}=\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+{c} \\ $$
Commented by Spillover last updated on 07/Jan/26
thanks
$${thanks} \\ $$
Answered by mr W last updated on 07/Jan/26
(d/dx)(xy)=x^3   xy=(x^4 /4)+C  ⇒y=(1/x)((x^4 /4)+C)
$$\frac{{d}}{{dx}}\left({xy}\right)={x}^{\mathrm{3}} \\ $$$${xy}=\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+{C} \\ $$$$\Rightarrow{y}=\frac{\mathrm{1}}{{x}}\left(\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+{C}\right) \\ $$
Commented by Spillover last updated on 07/Jan/26
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *