Menu Close

Proof-that-2-is-irrational-




Question Number 227283 by Edwanrosario201444 last updated on 11/Jan/26
Proof that (√2) is irrational
$${Proof}\:{that}\:\sqrt{\mathrm{2}}\:{is}\:{irrational} \\ $$
Answered by TonyCWX last updated on 11/Jan/26
Suppose (√2) is rational  Let a and b be positive integers such that  (√2) = (a/b)  Note that a and b cannot have a common factor.  ⇒ b(√2) = a  ⇒ 2b^2  = a^2   ⇒ a is an even number.    Let a = 2k where k = any integer.  ⇒2b^2  = (2k)^2   ⇒2b^2  = 4k^2   ⇒b^2  = 2k^2   ⇒b is an even number    But when both a and b are even, they will always have a common factor.  Hence, (√2) is irrational.
$$\mathrm{Suppose}\:\sqrt{\mathrm{2}}\:\mathrm{is}\:\mathrm{rational} \\ $$$$\mathrm{Let}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{such}\:\mathrm{that} \\ $$$$\sqrt{\mathrm{2}}\:=\:\frac{\mathrm{a}}{\mathrm{b}} \\ $$$$\mathrm{Note}\:\mathrm{that}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{cannot}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{factor}. \\ $$$$\Rightarrow\:\mathrm{b}\sqrt{\mathrm{2}}\:=\:\mathrm{a} \\ $$$$\Rightarrow\:\mathrm{2b}^{\mathrm{2}} \:=\:\mathrm{a}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{a}\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{number}. \\ $$$$ \\ $$$$\mathrm{Let}\:\mathrm{a}\:=\:\mathrm{2k}\:\mathrm{where}\:\mathrm{k}\:=\:\mathrm{any}\:\mathrm{integer}. \\ $$$$\Rightarrow\mathrm{2b}^{\mathrm{2}} \:=\:\left(\mathrm{2k}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2b}^{\mathrm{2}} \:=\:\mathrm{4k}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{b}^{\mathrm{2}} \:=\:\mathrm{2k}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{b}\:\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{number} \\ $$$$ \\ $$$$\mathrm{But}\:\mathrm{when}\:\mathrm{both}\:\mathrm{a}\:\mathrm{and}\:\mathrm{b}\:\mathrm{are}\:\mathrm{even},\:\mathrm{they}\:\mathrm{will}\:\mathrm{always}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{factor}. \\ $$$$\mathrm{Hence},\:\sqrt{\mathrm{2}}\:\mathrm{is}\:\mathrm{irrational}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *