Menu Close

Question-227276




Question Number 227276 by mr W last updated on 11/Jan/26
Commented by mr W last updated on 11/Jan/26
A hemispherical funnel is placed  tightly against the top of a table.   Water is poured into it slowly   through a small hole located at the   highest point of the funnel. When   the wate level inside the funnel   just reaches the hole the funnel   begins to float upward and the   water starts to flow out from the   bottom. If the radius of  the funnel   is R=10 cm and the density of water  is ρ=1 g/cm^3 , find the mass of the   funnel.
$${A}\:{hemispherical}\:{funnel}\:{is}\:{placed} \\ $$$${tightly}\:{against}\:{the}\:{top}\:{of}\:{a}\:{table}.\: \\ $$$${Water}\:{is}\:{poured}\:{into}\:{it}\:{slowly}\: \\ $$$${through}\:{a}\:{small}\:{hole}\:{located}\:{at}\:{the}\: \\ $$$${highest}\:{point}\:{of}\:{the}\:{funnel}.\:{When}\: \\ $$$${the}\:{wate}\:{level}\:{inside}\:{the}\:{funnel}\: \\ $$$${just}\:{reaches}\:{the}\:{hole}\:{the}\:{funnel}\: \\ $$$${begins}\:{to}\:{float}\:{upward}\:{and}\:{the}\: \\ $$$${water}\:{starts}\:{to}\:{flow}\:{out}\:{from}\:{the}\: \\ $$$${bottom}.\:{If}\:{the}\:{radius}\:{of}\:\:{the}\:{funnel}\: \\ $$$${is}\:{R}=\mathrm{10}\:{cm}\:{and}\:{the}\:{density}\:{of}\:{water} \\ $$$${is}\:\rho=\mathrm{1}\:{g}/{cm}^{\mathrm{3}} ,\:{find}\:{the}\:{mass}\:{of}\:{the}\: \\ $$$${funnel}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *