Question Number 227312 by hardmath last updated on 13/Jan/26

$$\mathrm{tg}\left(\mathrm{15}\right)\:+\:\mathrm{ctg}\left(\mathrm{5}\right)\:=\:? \\ $$
Answered by Kassista last updated on 13/Jan/26

$$ \\ $$$${tg}\left(\mathrm{3}\theta\right)\:=\:\frac{\mathrm{3}{tg}\left(\theta\right)−{tg}^{\mathrm{3}} \left(\theta\right)}{\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\theta\right)}\:\therefore\:{tg}\left(\mathrm{15}\right)=\frac{\mathrm{3}{tg}\left(\mathrm{5}\right)−{tg}^{\mathrm{3}} \left(\mathrm{5}\right)}{\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)} \\ $$$$ \\ $$$$\Rightarrow\:{tg}\left(\mathrm{15}\right)+{cotg}\left(\mathrm{5}\right)\:=\:\frac{\mathrm{3}{tg}\left(\mathrm{5}\right)−{tg}^{\mathrm{3}} \left(\mathrm{5}\right)}{\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)}+\frac{\mathrm{1}}{{tg}\left(\mathrm{5}\right)} \\ $$$$=\:\frac{\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)−{tg}^{\mathrm{4}} \left(\mathrm{5}\right)+\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)}{{tg}\left(\mathrm{5}\right)−\mathrm{3}{tg}^{\mathrm{3}} \left(\mathrm{5}\right)}\:=\:\frac{\mathrm{1}−{tg}^{\mathrm{4}} \left(\mathrm{5}\right)}{{tg}\left(\mathrm{5}\right)\left(\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)\right)} \\ $$$$ \\ $$$$\frac{\left(\mathrm{1}+{tg}^{\mathrm{2}} \left(\mathrm{5}\right)\right)\left(\mathrm{1}−{tg}^{\mathrm{2}} \left(\mathrm{5}\right)\right)}{{tg}\left(\mathrm{5}\right)\left(\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)\right)}\:=\:\frac{{sec}^{\mathrm{2}} \left(\mathrm{5}\right)\left(\mathrm{1}+{tg}\left(\mathrm{5}\right)\right)\left(\mathrm{1}−{tg}\left(\mathrm{5}\right)\right)}{{tg}\left(\mathrm{5}\right)\left(\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)\right)} \\ $$$$ \\ $$$$=\:\frac{\mathrm{2}\left(\mathrm{1}+{tg}\left(\mathrm{5}\right)\right)\left(\mathrm{1}−{tg}\left(\mathrm{5}\right)\right)}{{sin}\left(\mathrm{10}\right)\left(\mathrm{1}−\mathrm{3}{tg}^{\mathrm{2}} \left(\mathrm{5}\right)\right)}\:\approx\:\mathrm{11}.\mathrm{698001} \\ $$$$ \\ $$
Answered by Frix last updated on 13/Jan/26

$$\mathrm{2}−\sqrt{\mathrm{3}}+\mathrm{cot}\:\mathrm{5}° \\ $$