Question Number 227328 by cherokeesay last updated on 16/Jan/26

Answered by som(math1967) last updated on 17/Jan/26

$${sin}^{\mathrm{10}} {x}+{cos}^{\mathrm{10}} {x}=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$${let}\:{sin}^{\mathrm{2}} {x}={a},{cos}^{\mathrm{2}} {x}={b} \\ $$$$\:{a}^{\mathrm{5}} +{b}^{\mathrm{5}} =\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\left({a}+{b}\right)\left({a}^{\mathrm{4}} −{a}^{\mathrm{3}} {b}+{a}^{\mathrm{2}} {b}^{\mathrm{2}} −{ab}^{\mathrm{3}} +{b}^{\mathrm{4}} \right)=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$$\:\mathrm{36}\left(\mathrm{5}{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{5}{ab}+\mathrm{1}\right)=\mathrm{11}\bigstar \\ $$$$\Rightarrow\left(\mathrm{180}{a}^{\mathrm{2}} {b}^{\mathrm{2}} −\mathrm{180}{ab}+\mathrm{25}\right)=\mathrm{0} \\ $$$$\:\Rightarrow\left(\mathrm{6}{ab}−\mathrm{1}\right)\left(\mathrm{6}{ab}−\mathrm{5}\right)=\mathrm{0} \\ $$$$\Rightarrow{ab}=\frac{\mathrm{1}}{\mathrm{6}}\:\:{or}\:\frac{\mathrm{5}}{\mathrm{6}} \\ $$$$\:\left({sin}^{\mathrm{2}} {x}+{cos}^{\mathrm{2}} {x}\right)\left({sin}^{\mathrm{10}} {x}+{cos}^{\mathrm{10}} {x}\right)=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$${sin}^{\mathrm{12}} {x}+{cos}^{\mathrm{12}} {x}+ \\ $$$${sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}\left({sin}^{\mathrm{8}} {x}+{cos}^{\mathrm{8}} {x}\right)=\frac{\mathrm{11}}{\mathrm{36}}×\mathrm{1} \\ $$$${sin}^{\mathrm{12}} {x}+{cos}^{\mathrm{12}} {x}+\frac{\mathrm{1}}{\mathrm{6}}\left\{\left(\mathrm{1}−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{6}}\right)^{\mathrm{2}} −\mathrm{2}×\frac{\mathrm{1}}{\mathrm{36}}\right\} \\ $$$$\:=\frac{\mathrm{11}}{\mathrm{36}} \\ $$$${sin}^{\mathrm{12}} {x}+{cos}^{\mathrm{12}} {x}+\frac{\mathrm{1}}{\mathrm{6}}×\left(\frac{\mathrm{4}}{\mathrm{9}}−\frac{\mathrm{1}}{\mathrm{18}}\right)=\frac{\mathrm{11}}{\mathrm{36}}\: \\ $$$${sin}^{\mathrm{12}} {x}+{cos}^{\mathrm{12}} {x}=\frac{\mathrm{11}}{\mathrm{36}}−\frac{\mathrm{7}}{\mathrm{18}×\mathrm{6}} \\ $$$${sin}^{\mathrm{12}} {x}+{cos}^{\mathrm{12}} {x}=\frac{\mathrm{13}}{\mathrm{54}} \\ $$$${m}+{n}=\mathrm{67} \\ $$$${when}\:{sin}^{\mathrm{2}} {xcos}^{\mathrm{2}} {x}=\frac{\mathrm{5}}{\mathrm{6}} \\ $$$${then}\:…. \\ $$$$\bigstar\:{a}+{b}=\mathrm{1} \\ $$$$\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{1}−\mathrm{2}{ab} \\ $$$${a}^{\mathrm{4}} +{b}^{\mathrm{4}} =\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\:\:\:=\mathrm{1}−\mathrm{4}{ab}+\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$
Commented by cherokeesay last updated on 17/Jan/26

$${so}\:{nice}\:!\:{thank}\:{you}\:{sir}. \\ $$
Answered by Ghisom_ last updated on 17/Jan/26

$${c}^{\mathrm{10}} +{s}^{\mathrm{10}} ={c}^{\mathrm{10}} +\left(\mathrm{1}−{c}^{\mathrm{2}} \right)^{\mathrm{5}} =\frac{\mathrm{11}}{\mathrm{36}} \\ $$$${c}^{\mathrm{8}} −\mathrm{2}{c}^{\mathrm{6}} +\mathrm{2}{c}^{\mathrm{4}} −{c}^{\mathrm{2}} +\frac{\mathrm{5}}{\mathrm{36}}=\mathrm{0} \\ $$$$\left({c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{4}} +\frac{\mathrm{1}}{\mathrm{2}}\left({c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{7}}{\mathrm{144}}=\mathrm{0} \\ $$$${c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}=\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\:\:\:\:\:{c}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}=\pm\frac{\sqrt{\mathrm{21}}}{\mathrm{6}}\mathrm{i} \\ $$$${c}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{6}}\:\:\:\:\:{c}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{21}}}{\mathrm{6}}\mathrm{i} \\ $$$$ \\ $$$${c}^{\mathrm{12}} +{s}^{\mathrm{12}} ={c}^{\mathrm{12}} +\left(\mathrm{1}−{c}^{\mathrm{2}} \right)^{\mathrm{6}} =\left({c}^{\mathrm{2}} \right)^{\mathrm{6}} +\left(\mathrm{1}−{c}^{\mathrm{2}} \right)^{\mathrm{6}} \\ $$$$\mathrm{cos}^{\mathrm{12}} \:{x}\:+\mathrm{sin}^{\mathrm{12}} \:{x}\:=\begin{cases}{\mathrm{13}/\mathrm{54}}\\{\mathrm{59}/\mathrm{54}}\end{cases} \\ $$$${m}+{n}=\mathrm{67}\vee{m}+{n}=\mathrm{113} \\ $$
Answered by Spillover last updated on 17/Jan/26

Answered by Spillover last updated on 17/Jan/26

Answered by Spillover last updated on 17/Jan/26
