Menu Close

x-1-x-x-3-gt-8-




Question Number 227326 by gregori last updated on 16/Jan/26
   ∣ x+1 ∣ + ∣ x ∣ + ∣ x−3∣ > 8
$$\:\:\:\mid\:{x}+\mathrm{1}\:\mid\:+\:\mid\:{x}\:\mid\:+\:\mid\:{x}−\mathrm{3}\mid\:>\:\mathrm{8}\:\: \\ $$
Answered by Kassista last updated on 16/Jan/26
  if x≥3:  x+1+x+x−3>8 ⇔ 3x−2>8, 3x>10, x>((10)/3)...(1)  if 0≤x<3:  x+1+x+3−x>8 ⇔ x+4>8, x>4 →← (contradiction)  if  −1≤x<0:  x+1−x+3−x>8 ⇔4−x>8, −x>4, x<−4 →←  if x<−1  −x−1−x+3−x>8⇔2−3x>8, −3x>6, x<−2...(2)    (1)∪(2) = S={x∈R: x<−2 or x>((10)/3)}
$$ \\ $$$${if}\:{x}\geqslant\mathrm{3}: \\ $$$${x}+\mathrm{1}+{x}+{x}−\mathrm{3}>\mathrm{8}\:\Leftrightarrow\:\mathrm{3}{x}−\mathrm{2}>\mathrm{8},\:\mathrm{3}{x}>\mathrm{10},\:{x}>\frac{\mathrm{10}}{\mathrm{3}}…\left(\mathrm{1}\right) \\ $$$${if}\:\mathrm{0}\leqslant{x}<\mathrm{3}: \\ $$$${x}+\mathrm{1}+{x}+\mathrm{3}−{x}>\mathrm{8}\:\Leftrightarrow\:{x}+\mathrm{4}>\mathrm{8},\:{x}>\mathrm{4}\:\rightarrow\leftarrow\:\left({contradiction}\right) \\ $$$${if}\:\:−\mathrm{1}\leqslant{x}<\mathrm{0}: \\ $$$${x}+\mathrm{1}−{x}+\mathrm{3}−{x}>\mathrm{8}\:\Leftrightarrow\mathrm{4}−{x}>\mathrm{8},\:−{x}>\mathrm{4},\:{x}<−\mathrm{4}\:\rightarrow\leftarrow \\ $$$${if}\:{x}<−\mathrm{1} \\ $$$$−{x}−\mathrm{1}−{x}+\mathrm{3}−{x}>\mathrm{8}\Leftrightarrow\mathrm{2}−\mathrm{3}{x}>\mathrm{8},\:−\mathrm{3}{x}>\mathrm{6},\:{x}<−\mathrm{2}…\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\cup\left(\mathrm{2}\right)\:=\:{S}=\left\{{x}\in\mathbb{R}:\:{x}<−\mathrm{2}\:{or}\:{x}>\frac{\mathrm{10}}{\mathrm{3}}\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *