Menu Close

1-Does-half-open-interval-A-0-1-is-Compact-Space-2-Prove-for-a-Compact-Space-X-k-Product-Space-X-k-X-k-k-I-also-Compact-Space-3-Show-that-for-a-Compact-Space-X-and-Continuous-fu




Question Number 227329 by Lara2440 last updated on 17/Jan/26
1) Does half open interval A=[0,1) is Compact Space ?  2) Prove for a  Compact Space X_k     Product Space X=Π_k  {X_k ^   ; k∈I}  also Compact Space  3) Show that for a Compact Space X and Continuous function f  if  f  satisfy  f;X→Y ,Image Y also Compact Space
$$\left.\mathrm{1}\right)\:\mathrm{Does}\:\mathrm{half}\:\mathrm{open}\:\mathrm{interval}\:{A}=\left[\mathrm{0},\mathrm{1}\right)\:\mathrm{is}\:\mathrm{Compact}\:\mathrm{Space}\:? \\ $$$$\left.\mathrm{2}\right)\:\mathrm{Prove}\:\mathrm{for}\:\mathrm{a}\:\:\mathrm{Compact}\:\mathrm{Space}\:{X}_{{k}} \:\: \\ $$$$\mathrm{Product}\:\mathrm{Space}\:{X}=\underset{{k}} {\prod}\:\left\{{X}_{{k}} ^{\:} \:;\:{k}\in{I}\right\}\:\:\mathrm{also}\:\mathrm{Compact}\:\mathrm{Space} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{Show}\:\mathrm{that}\:\mathrm{for}\:\mathrm{a}\:\mathrm{Compact}\:\mathrm{Space}\:{X}\:\mathrm{and}\:\mathrm{Continuous}\:\mathrm{function}\:{f} \\ $$$$\mathrm{if}\:\:{f}\:\:\mathrm{satisfy}\:\:{f};{X}\rightarrow{Y}\:,\mathrm{Image}\:{Y}\:\mathrm{also}\:\mathrm{Compact}\:\mathrm{Space} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *