Menu Close

find-the-surface-area-of-a-spherical-cap-




Question Number 227341 by fantastic2 last updated on 17/Jan/26
find the surface area of a spherical  cap
$${find}\:{the}\:{surface}\:{area}\:{of}\:{a}\:{spherical} \\ $$$${cap} \\ $$
Commented by Kassista last updated on 17/Jan/26
  are you simply asking to prove the surface area   of the sphere?
$$ \\ $$$${are}\:{you}\:{simply}\:{asking}\:{to}\:{prove}\:{the}\:{surface}\:{area} \\ $$$$\:{of}\:{the}\:{sphere}? \\ $$
Commented by fantastic2 last updated on 17/Jan/26
no
$${no} \\ $$
Commented by fantastic2 last updated on 17/Jan/26
Commented by fantastic2 last updated on 17/Jan/26
find surface area of blue region
$${find}\:{surface}\:{area}\:{of}\:{blue}\:{region} \\ $$
Commented by mr W last updated on 17/Jan/26
A=2πrh+πa^2
$${A}=\mathrm{2}\pi{rh}+\pi{a}^{\mathrm{2}} \\ $$
Commented by fantastic2 last updated on 17/Jan/26
how
$${how} \\ $$$$ \\ $$
Commented by mr W last updated on 17/Jan/26
A_1 =∫_0 ^θ 2πr sin α rdα    =2πr^2 ∫_0 ^θ sin α dα    =2πr^2 (1−cos θ)    =2πrh  A_2 =πa^2
$${A}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\theta} \mathrm{2}\pi{r}\:\mathrm{sin}\:\alpha\:{rd}\alpha \\ $$$$\:\:=\mathrm{2}\pi{r}^{\mathrm{2}} \int_{\mathrm{0}} ^{\theta} \mathrm{sin}\:\alpha\:{d}\alpha \\ $$$$\:\:=\mathrm{2}\pi{r}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$$\:\:=\mathrm{2}\pi{rh} \\ $$$${A}_{\mathrm{2}} =\pi{a}^{\mathrm{2}} \\ $$
Commented by fantastic2 last updated on 17/Jan/26
great
$${great} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *