Menu Close

16-3-x-1-16-3-x-4-3-x-1-2-3-x-1-2-x-1-1-3-17-find-x-




Question Number 227370 by Math1 last updated on 18/Jan/26
((16∙3^(x−1)  + 16∙3^x )/(4∙3^(x+1)  − 2∙3^(x−1) )) = ((2^(x−1) )^(1/3) /(17))     find:  x=?
$$\frac{\mathrm{16}\centerdot\mathrm{3}^{\boldsymbol{\mathrm{x}}−\mathrm{1}} \:+\:\mathrm{16}\centerdot\mathrm{3}^{\boldsymbol{\mathrm{x}}} }{\mathrm{4}\centerdot\mathrm{3}^{\boldsymbol{\mathrm{x}}+\mathrm{1}} \:−\:\mathrm{2}\centerdot\mathrm{3}^{\boldsymbol{\mathrm{x}}−\mathrm{1}} }\:=\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}^{\boldsymbol{\mathrm{x}}−\mathrm{1}} }}{\mathrm{17}}\:\:\:\:\:\mathrm{find}:\:\:\mathrm{x}=? \\ $$
Answered by Kassista last updated on 18/Jan/26
  LHS = ((16∙3^x ((1/3)+1))/(2∙3^x (2∙3−(1/3)))) = ((8.(4/3))/((17)/3)) =((32)/(17))     ∴ ((32)/(17)) = ((2^(x−1) )^(1/3) /(17)), 2^5  = 2^((x−1)/3) ⇒5=((x−1)/3) ∴ x=16
$$ \\ $$$${LHS}\:=\:\frac{\mathrm{16}\centerdot\mathrm{3}^{{x}} \left(\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{1}\right)}{\mathrm{2}\centerdot\mathrm{3}^{{x}} \left(\mathrm{2}\centerdot\mathrm{3}−\frac{\mathrm{1}}{\mathrm{3}}\right)}\:=\:\frac{\mathrm{8}.\frac{\mathrm{4}}{\mathrm{3}}}{\frac{\mathrm{17}}{\mathrm{3}}}\:=\frac{\mathrm{32}}{\mathrm{17}}\: \\ $$$$ \\ $$$$\therefore\:\frac{\mathrm{32}}{\mathrm{17}}\:=\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}^{{x}−\mathrm{1}} }}{\mathrm{17}},\:\mathrm{2}^{\mathrm{5}} \:=\:\mathrm{2}^{\frac{{x}−\mathrm{1}}{\mathrm{3}}} \Rightarrow\mathrm{5}=\frac{{x}−\mathrm{1}}{\mathrm{3}}\:\therefore\:{x}=\mathrm{16} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *