Menu Close

prove-d-dx-x-n-nx-n-1-for-all-gt-0-Exist-gt-0-such-that-0-lt-x-lt-Implies-f-x-f-x-f-1-lt-let-s-f-x-x-n-gt-0-gt-0-such-that-0-lt-x-lt-




Question Number 227487 by Lara2440 last updated on 04/Feb/26
prove  ((d   )/dx) x^n =nx^(n−1)   for all ε>0 Exist δ>0  such that   0<∣x−ξ∣<δ  Implies ∣((f(x)−f(ξ))/(x−ξ))−f^((1)) (ξ)∣<ε  let′s f(x)=x^n    ∀ε>0 , ∃δ>0 such that 0<∣x−ξ∣<δ → ∣((x^n −ξ^n )/(x−ξ))−nξ^(n−1) ∣<ε  help me...  :(
$$\mathrm{prove}\:\:\frac{\mathrm{d}\:\:\:}{\mathrm{d}{x}}\:{x}^{{n}} ={nx}^{{n}−\mathrm{1}} \\ $$$$\mathrm{for}\:\mathrm{all}\:\epsilon>\mathrm{0}\:\mathrm{Exist}\:\delta>\mathrm{0}\:\:\mathrm{such}\:\mathrm{that} \\ $$$$\:\mathrm{0}<\mid{x}−\xi\mid<\delta\:\:\mathrm{Implies}\:\mid\frac{{f}\left({x}\right)−{f}\left(\xi\right)}{{x}−\xi}−{f}^{\left(\mathrm{1}\right)} \left(\xi\right)\mid<\epsilon \\ $$$$\mathrm{let}'\mathrm{s}\:{f}\left({x}\right)={x}^{{n}} \: \\ $$$$\forall\epsilon>\mathrm{0}\:,\:\exists\delta>\mathrm{0}\:\mathrm{such}\:\mathrm{that}\:\mathrm{0}<\mid{x}−\xi\mid<\delta\:\rightarrow\:\mid\frac{{x}^{{n}} −\xi^{{n}} }{{x}−\xi}−{n}\xi^{{n}−\mathrm{1}} \mid<\epsilon \\ $$$$\mathrm{help}\:\mathrm{me}…\:\::\left(\:\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *