Question Number 79969 by Rio Michael last updated on 29/Jan/20

$${find}\:{the}\:{general}\:{solution}\:{for}\: \\ $$$$\:\:\mathrm{2sin}\:\mathrm{3}{x}\:=\:\mathrm{sin}\:\mathrm{2}{x} \\ $$
Answered by behi83417@gmail.com last updated on 29/Jan/20
![2(3sinx−4sin^3 x)=2sinxcosx ⇒sinx(3−4sin^2 x−cosx)=0 ⇒ { ((sinx=0⇒x=kπ ,k∈Z)),((3−4(1−cos^2 x)−cosx=0)) :} 4cos^2 x−cosx−1=0 ⇒cosx=((1±(√(1+16)))/8)=((1±(√(17)))/8) ⇒ { ((cosx=((1+(√(17)))/8)⇒x=2mπ±cos^(−1) ((1+(√(17)))/8)[m∈Z])),((cosx=((1−(√(17)))/8)⇒x=2nπ±cos^(−1) ((1−(√(17)))/8)[n∈Z])) :}](https://www.tinkutara.com/question/Q79970.png)
$$\mathrm{2}\left(\mathrm{3sinx}−\mathrm{4sin}^{\mathrm{3}} \mathrm{x}\right)=\mathrm{2sinxcosx} \\ $$$$\Rightarrow\mathrm{sinx}\left(\mathrm{3}−\mathrm{4sin}^{\mathrm{2}} \mathrm{x}−\mathrm{cosx}\right)=\mathrm{0} \\ $$$$\Rightarrow\begin{cases}{\mathrm{sinx}=\mathrm{0}\Rightarrow\mathrm{x}=\mathrm{k}\pi\:,\mathrm{k}\in\mathrm{Z}}\\{\mathrm{3}−\mathrm{4}\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \mathrm{x}\right)−\mathrm{cosx}=\mathrm{0}}\end{cases} \\ $$$$\mathrm{4cos}^{\mathrm{2}} \mathrm{x}−\mathrm{cosx}−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cosx}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{16}}}{\mathrm{8}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{8}} \\ $$$$\Rightarrow\begin{cases}{\mathrm{cosx}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{8}}\Rightarrow\mathrm{x}=\mathrm{2m}\pi\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{8}}\left[\mathrm{m}\in\mathrm{Z}\right]}\\{\mathrm{cosx}=\frac{\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{8}}\Rightarrow\mathrm{x}=\mathrm{2n}\pi\pm\mathrm{cos}^{−\mathrm{1}} \frac{\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{8}}\left[\mathrm{n}\in\mathrm{Z}\right]}\end{cases} \\ $$
Commented by Rio Michael last updated on 30/Jan/20

$${thanks} \\ $$