Question Number 145780 by Engr_Jidda last updated on 08/Jul/21

$${find}\:{the}\:{volume}\:{of}\:{the}\:{solid}\: \\ $$$${generated}\:{by}\:{the}\:{region}\:{bounded}\:{by} \\ $$$${y}=\sqrt{{x}}\:,\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:{and}\:{X}−{axis} \\ $$
Answered by ArielVyny last updated on 08/Jul/21
![V=π∫_0 ^1 y^2 dx=π∫_0 ^1 xdx=π[(1/2)x^2 ]_0 ^1 =(π/2)](https://www.tinkutara.com/question/Q145785.png)
$${V}=\pi\int_{\mathrm{0}} ^{\mathrm{1}} {y}^{\mathrm{2}} {dx}=\pi\int_{\mathrm{0}} ^{\mathrm{1}} {xdx}=\pi\left[\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\pi}{\mathrm{2}} \\ $$$$ \\ $$