Question Number 150356 by mnjuly1970 last updated on 11/Aug/21

$$\:{solve}… \\ $$$$\:\:\:\:\:\mathrm{I}:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\mathrm{Arcsin}\:\left(\sqrt{{x}}\:\right)}{\mathrm{1}−{x}\:+\:{x}^{\:\mathrm{2}} }\:{dx}=? \\ $$
Answered by Lordose last updated on 12/Aug/21

$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{sin}^{−\mathrm{1}} \left(\sqrt{\mathrm{x}}\right)}{\mathrm{1}−\mathrm{x}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\overset{\mathrm{x}=\mathrm{u}^{\mathrm{2}} } {=}\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{usin}^{−\mathrm{1}} \left(\mathrm{u}\right)}{\mathrm{1}−\mathrm{u}^{\mathrm{2}} +\mathrm{u}^{\mathrm{4}} }\mathrm{du} \\ $$$$\Omega\:=\:\:\mathrm{2}\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{usin}^{−\mathrm{1}} \left(\mathrm{u}\right)}{\mathrm{1}−\mathrm{u}^{\mathrm{2}} +\mathrm{u}^{\mathrm{4}} }\mathrm{du}\:\overset{\mathrm{u}=\mathrm{sin}\left(\mathrm{y}\right)} {=}\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{2}}} \frac{\mathrm{ysin}\left(\mathrm{2y}\right)}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{y}\right)+\mathrm{sin}^{\mathrm{4}} \left(\mathrm{y}\right)}\mathrm{dy} \\ $$$$\Omega\:\overset{\mathrm{y}=\frac{\mathrm{x}}{\mathrm{2}}} {=}\mathrm{2}\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \frac{\mathrm{xsin}\left(\mathrm{x}\right)}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{3}}\mathrm{dx}\: \\ $$$$\Omega\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \frac{\mathrm{xsin}\left(\mathrm{x}\right)}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{3}}\mathrm{dx}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \frac{\left(\boldsymbol{\pi}−\mathrm{x}\right)\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{3}}\mathrm{dx} \\ $$$$\Omega\:=\:\frac{\boldsymbol{\pi}}{\mathrm{2}}\int_{\mathrm{0}} ^{\:\boldsymbol{\pi}} \frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)+\mathrm{3}}\mathrm{dx}\:\overset{\mathrm{u}=\mathrm{cos}\left(\mathrm{x}\right)} {=}\frac{\boldsymbol{\pi}}{\mathrm{2}}\int_{−\mathrm{1}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{u}^{\mathrm{2}} +\mathrm{3}}\mathrm{du} \\ $$$$\Omega\:=\:\mid\frac{\boldsymbol{\pi}}{\:\mathrm{2}\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{u}}{\:\sqrt{\mathrm{3}}}\right)\mid_{−\frac{\boldsymbol{\pi}}{\mathrm{4}}} ^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} =\:\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\:\mathrm{6}\sqrt{\mathrm{3}}} \\ $$
Answered by mindispower last updated on 11/Aug/21
![f(x)=1−x+x^2 f(1−x)=1−(1−x)+(1−x)^2 =1−x+x^2 x→1−x I=∫_0 ^1 ((arcsin(√((1−x))))/(1−x+x^2 ))dx arcsin(a)+arcsin(b)=arcsin(a(√(1−b^2 ))+b(√(1−a^2 ))) arcsin((√(1−x)))+arcsin((√x))=arcsin((1−x)(√(1−(√x^2 )+(√x).(√(1−((√(1−x)^2 ))))))) x∈[0,1[ (√((1−x)^2 ))=1−x =arcsin(1−x+x)=arcsin(1)=(π/2) 2I=∫_0 ^1 ((arcsin((√(1−x))))/(1−x+x^2 ))dx+∫_0 ^1 ((arcsin((√x)))/(1−x+x^2 ))dx 2I=∫_0 ^1 ((arcsin((√x))+arcsim((√(1−x))))/(1−x+x^2 ))dx =(π/2)∫_0 ^1 (dx/(1−x+x^2 ))=(π/2)∫_0 ^1 (dx/((x−(1/2))^2 +(3/4))) =(π/2)[(2/( (√3)))arctan((2/( (√3)))(x−(1/2))]_0 ^1 =(π/( (√3))).(π/3)=((2π^2 )/(3(√3))) I=(π^2 /(3(√3)))](https://www.tinkutara.com/question/Q150373.png)
$${f}\left({x}\right)=\mathrm{1}−{x}+{x}^{\mathrm{2}} \\ $$$${f}\left(\mathrm{1}−{x}\right)=\mathrm{1}−\left(\mathrm{1}−{x}\right)+\left(\mathrm{1}−{x}\right)^{\mathrm{2}} =\mathrm{1}−{x}+{x}^{\mathrm{2}} \\ $$$${x}\rightarrow\mathrm{1}−{x} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arcsin}\sqrt{\left(\mathrm{1}−{x}\right)}}{\mathrm{1}−{x}+{x}^{\mathrm{2}} }{dx} \\ $$$${arcsin}\left({a}\right)+{arcsin}\left({b}\right)={arcsin}\left({a}\sqrt{\mathrm{1}−{b}^{\mathrm{2}} }+{b}\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }\right) \\ $$$${arcsin}\left(\sqrt{\mathrm{1}−{x}}\right)+{arcsin}\left(\sqrt{{x}}\right)={arcsin}\left(\left(\mathrm{1}−{x}\right)\sqrt{\left.\mathrm{1}−\sqrt{{x}^{\mathrm{2}} }+\sqrt{{x}}.\sqrt{\mathrm{1}−\left(\sqrt{\left.\mathrm{1}−{x}\right)^{\mathrm{2}} }\right.}\right)}\right. \\ $$$${x}\in\left[\mathrm{0},\mathrm{1}\left[\:\sqrt{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }=\mathrm{1}−{x}\right.\right. \\ $$$$={arcsin}\left(\mathrm{1}−{x}+{x}\right)={arcsin}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arcsin}\left(\sqrt{\mathrm{1}−{x}}\right)}{\mathrm{1}−{x}+{x}^{\mathrm{2}} }{dx}+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arcsin}\left(\sqrt{{x}}\right)}{\mathrm{1}−{x}+{x}^{\mathrm{2}} }{dx} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{arcsin}\left(\sqrt{{x}}\right)+{arcsim}\left(\sqrt{\left.\mathrm{1}−{x}\right)}\right.}{\mathrm{1}−{x}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\mathrm{1}−{x}+{x}^{\mathrm{2}} }=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$=\frac{\pi}{\mathrm{2}}\left[\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}{arctan}\left(\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \right. \\ $$$$=\frac{\pi}{\:\sqrt{\mathrm{3}}}.\frac{\pi}{\mathrm{3}}=\frac{\mathrm{2}\pi^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${I}=\frac{\pi^{\mathrm{2}} }{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$
Answered by Kamel last updated on 11/Aug/21

$$ \\ $$$$\:\:\:{I}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tArcsin}\left({t}\right)}{\mathrm{1}−{t}^{\mathrm{2}} +{t}^{\mathrm{4}} }{dt}=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{usin}\left({u}\right){cos}\left({u}\right){du}}{{cos}^{\mathrm{2}} \left({u}\right)+{sin}^{\mathrm{4}} \left({u}\right)} \\ $$$$\:\:\:\:\:=\int_{\mathrm{0}} ^{\pi} \frac{{usin}\left({u}\right){du}}{\mathrm{3}+{cos}^{\mathrm{2}} \left({u}\right)}=\int_{\mathrm{0}} ^{\pi} \frac{\left(\pi−{t}\right){sin}\left({t}\right)}{\mathrm{3}+{cos}^{\mathrm{2}} \left({t}\right)}{dt} \\ $$$$\therefore\:{I}=\frac{\pi}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left({u}\right){dt}}{\mathrm{3}+{cos}^{\mathrm{2}} \left({t}\right)}=\pi\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sin}\left({t}\right){dt}}{\mathrm{3}+{cos}^{\mathrm{2}} \left({t}\right)}\overset{{y}={cos}\left({t}\right)} {=}\pi\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dy}}{\mathrm{3}+{y}^{\mathrm{2}} }=\frac{\pi}{\:\sqrt{\mathrm{3}}}{Arctg}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right) \\ $$$$\:\:\:\:\:\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}\sqrt{\mathrm{3}}} \\ $$