Question Number 22315 by Tinkutara last updated on 15/Oct/17
![Prove that the greatest coefficient in the expansion of (x_1 +x_2 +x_3 +...+x_k )^n = ((n!)/((q!)^(k−r) [(q+1)!]^r )) , where n = qk + r, 0 ≤ r ≤ k − 1](https://www.tinkutara.com/question/Q22315.png)
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +…+{x}_{{k}} \right)^{{n}} \\ $$$$=\:\frac{{n}!}{\left({q}!\right)^{{k}−{r}} \left[\left({q}+\mathrm{1}\right)!\right]^{{r}} }\:,\:\mathrm{where}\:{n}\:=\:{qk}\:+\:{r}, \\ $$$$\mathrm{0}\:\leqslant\:{r}\:\leqslant\:{k}\:−\:\mathrm{1} \\ $$