Question Number 88708 by ajfour last updated on 12/Apr/20

Commented by ajfour last updated on 12/Apr/20

$${If}\:\:{AE}={BF}\:,\:{find}\:{r}/{R}. \\ $$
Commented by mr W last updated on 12/Apr/20
![AE=FB=k (2R−k)^2 +r^2 =(k+r)^2 2R^2 =(2R+r)k ⇒k=((2R^2 )/(2R+r)) (r/(k+r))=((√((2R)^2 −(2r+k)^2 ))/(2R))=(√(1−((r/R)+(k/(2R)))^2 )) ((1/((k/r)+1)))^2 =1−((r/R)+(k/(2R)))^2 with λ=(r/R) ((1/((2/((2+λ)λ))+1)))^2 =1−(λ+(1/(2+λ)))^2 λ^2 (2+λ)^4 =(λ^2 +2λ+2)^2 [(λ+2)^2 −(λ+1)^4 ] (λ+1)^2 (λ^3 +3λ^2 +2λ−2)(λ^3 +3λ^2 +6λ+6)=0 ⇒λ=0.52138](https://www.tinkutara.com/question/Q88714.png)
$${AE}={FB}={k} \\ $$$$\left(\mathrm{2}{R}−{k}\right)^{\mathrm{2}} +{r}^{\mathrm{2}} =\left({k}+{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{R}^{\mathrm{2}} =\left(\mathrm{2}{R}+{r}\right){k} \\ $$$$\Rightarrow{k}=\frac{\mathrm{2}{R}^{\mathrm{2}} }{\mathrm{2}{R}+{r}} \\ $$$$\frac{{r}}{{k}+{r}}=\frac{\sqrt{\left(\mathrm{2}{R}\right)^{\mathrm{2}} −\left(\mathrm{2}{r}+{k}\right)^{\mathrm{2}} }}{\mathrm{2}{R}}=\sqrt{\mathrm{1}−\left(\frac{{r}}{{R}}+\frac{{k}}{\mathrm{2}{R}}\right)^{\mathrm{2}} } \\ $$$$\left(\frac{\mathrm{1}}{\frac{{k}}{{r}}+\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{1}−\left(\frac{{r}}{{R}}+\frac{{k}}{\mathrm{2}{R}}\right)^{\mathrm{2}} \\ $$$${with}\:\lambda=\frac{{r}}{{R}} \\ $$$$\left(\frac{\mathrm{1}}{\frac{\mathrm{2}}{\left(\mathrm{2}+\lambda\right)\lambda}+\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{1}−\left(\lambda+\frac{\mathrm{1}}{\mathrm{2}+\lambda}\right)^{\mathrm{2}} \\ $$$$\lambda^{\mathrm{2}} \left(\mathrm{2}+\lambda\right)^{\mathrm{4}} =\left(\lambda^{\mathrm{2}} +\mathrm{2}\lambda+\mathrm{2}\right)^{\mathrm{2}} \left[\left(\lambda+\mathrm{2}\right)^{\mathrm{2}} −\left(\lambda+\mathrm{1}\right)^{\mathrm{4}} \right] \\ $$$$\left(\lambda+\mathrm{1}\right)^{\mathrm{2}} \left(\lambda^{\mathrm{3}} +\mathrm{3}\lambda^{\mathrm{2}} +\mathrm{2}\lambda−\mathrm{2}\right)\left(\lambda^{\mathrm{3}} +\mathrm{3}\lambda^{\mathrm{2}} +\mathrm{6}\lambda+\mathrm{6}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda=\mathrm{0}.\mathrm{52138} \\ $$
Commented by john santu last updated on 12/Apr/20

Commented by ajfour last updated on 12/Apr/20

$${Thanks}\:{for}\:{confirmation}\:{Sir}. \\ $$$${Nice}\:{solution}. \\ $$
Commented by john santu last updated on 12/Apr/20

$${let}\:{me}\:{try}\: \\ $$$${let}\:{AE}\:=\:{BF}\:=\:{x}\: \\ $$$$\mathrm{sin}\:\theta\:=\:\mathrm{sin}\:\theta \\ $$$$\frac{{r}}{{r}+{x}}\:=\:\frac{{BD}}{\mathrm{2}{R}}\:\left({i}\right) \\ $$$${BD}\:=\:\sqrt{\mathrm{4}{R}^{\mathrm{2}} −\left(\mathrm{2}{r}+{x}\right)^{\mathrm{2}} } \\ $$$${r}+{x}\:=\:\sqrt{\left(\mathrm{2}{R}−{x}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\Rightarrow\frac{{r}}{\:\sqrt{\left(\mathrm{2}{R}−{x}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }}\:=\:\frac{\sqrt{\mathrm{4}{R}^{\mathrm{2}} −\left(\mathrm{2}{r}+{x}\right)^{\mathrm{2}} }}{\mathrm{2}{R}} \\ $$$$\frac{{r}^{\mathrm{2}} }{\left(\mathrm{2}{R}−{x}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }\:=\:\frac{\mathrm{4}{R}^{\mathrm{2}} −\left(\mathrm{2}{r}+{x}\right)^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} } \\ $$$$ \\ $$
Answered by mahdi last updated on 12/Apr/20
