Question Number 91632 by mathmax by abdo last updated on 02/May/20

$${find}\:{a}\:{equivalent}\:{of}\:{U}_{{n}} \:=\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}+…+\frac{\mathrm{1}}{\:\sqrt{{n}}} \\ $$
Commented by mathmax by abdo last updated on 02/May/20
![we hsve U_n =Σ_(k=1) ^n (1/( (√k))) the sequence n→(1/( (√n))) is decreasing ⇒ U_n ∼∫_1 ^n (dt/( (√t))) =[2(√t)]_1 ^n =2(√n)−2 ⇒U_n ∼ 2(√n)(n→+∞)](https://www.tinkutara.com/question/Q91712.png)
$${we}\:{hsve}\:{U}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\:\sqrt{{k}}}\:\:\:{the}\:{sequence}\:{n}\rightarrow\frac{\mathrm{1}}{\:\sqrt{{n}}}\:{is}\:{decreasing}\:\Rightarrow \\ $$$${U}_{{n}} \sim\int_{\mathrm{1}} ^{{n}} \:\frac{{dt}}{\:\sqrt{{t}}}\:=\left[\mathrm{2}\sqrt{{t}}\right]_{\mathrm{1}} ^{{n}} \:=\mathrm{2}\sqrt{{n}}−\mathrm{2}\:\Rightarrow{U}_{{n}} \sim\:\mathrm{2}\sqrt{{n}}\left({n}\rightarrow+\infty\right) \\ $$