Question Number 159121 by physicstutes last updated on 13/Nov/21
![Consider f(x) = x^3 + 2x −1. Use the intermidiate value theorem and the Rolle theorem to establish that the equation f(x) = 0 has a unique solution denoted a_0 ∈] 0,1[.](https://www.tinkutara.com/question/Q159121.png)
$$\mathrm{Consider} \\ $$$${f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{2}{x}\:−\mathrm{1}. \\ $$$$\mathrm{Use}\:\mathrm{the}\:\mathrm{intermidiate}\:\mathrm{value}\:\mathrm{theorem}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{Rolle}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{establish}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{f}\left({x}\right)\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{a}\:\mathrm{unique}\:\mathrm{solution} \\ $$$$\left.\mathrm{denoted}\:{a}_{\mathrm{0}} \in\right]\:\mathrm{0},\mathrm{1}\left[.\:\right. \\ $$