Question Number 28070 by naka3546 last updated on 19/Jan/18

Answered by mrW2 last updated on 20/Jan/18
![let ∠QSR=α ∠PQS=α−40 ((PS)/(sin (α−40)))=((PQ)/(sin (180−α)))=((PQ)/(sin α)) ⇒PS=((sin (α−40))/(sin α))×PQ ((QR)/(sin 40))=((PQ)/(sin (90−((40)/2))))=((PQ)/(cos 20)) ⇒QR=((sin 40)/(cos 20))×PQ=2 sin 20×PQ PS=QR ⇒((sin (α−40))/(sin α))=2 sin 20 ⇒sin α cos 40−cos α sin 40=2 sin 20 sin α ⇒tan α cos 40−sin 40=2 sin 20 tan α ⇒tan α=((sin 40)/(cos 40−2sin 20))=((sin 40)/(cos 40−(√(2(1−cos 40))))) ⇒α=tan^(−1) [((sin 40)/(cos 40−(√(2(1−cos 40)))))]=82.7° ⇒β=180−α=97.3°](https://www.tinkutara.com/question/Q28109.png)
$${let}\:\angle{QSR}=\alpha \\ $$$$\angle{PQS}=\alpha−\mathrm{40} \\ $$$$\frac{{PS}}{\mathrm{sin}\:\left(\alpha−\mathrm{40}\right)}=\frac{{PQ}}{\mathrm{sin}\:\left(\mathrm{180}−\alpha\right)}=\frac{{PQ}}{\mathrm{sin}\:\alpha} \\ $$$$\Rightarrow{PS}=\frac{\mathrm{sin}\:\left(\alpha−\mathrm{40}\right)}{\mathrm{sin}\:\alpha}×{PQ} \\ $$$$\frac{{QR}}{\mathrm{sin}\:\mathrm{40}}=\frac{{PQ}}{\mathrm{sin}\:\left(\mathrm{90}−\frac{\mathrm{40}}{\mathrm{2}}\right)}=\frac{{PQ}}{\mathrm{cos}\:\mathrm{20}} \\ $$$$\Rightarrow{QR}=\frac{\mathrm{sin}\:\mathrm{40}}{\mathrm{cos}\:\mathrm{20}}×{PQ}=\mathrm{2}\:\mathrm{sin}\:\mathrm{20}×{PQ} \\ $$$${PS}={QR} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\left(\alpha−\mathrm{40}\right)}{\mathrm{sin}\:\alpha}=\mathrm{2}\:\mathrm{sin}\:\mathrm{20} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha\:\mathrm{cos}\:\mathrm{40}−\mathrm{cos}\:\alpha\:\mathrm{sin}\:\mathrm{40}=\mathrm{2}\:\mathrm{sin}\:\mathrm{20}\:\mathrm{sin}\:\alpha \\ $$$$\Rightarrow\mathrm{tan}\:\alpha\:\mathrm{cos}\:\mathrm{40}−\mathrm{sin}\:\mathrm{40}=\mathrm{2}\:\mathrm{sin}\:\mathrm{20}\:\mathrm{tan}\:\alpha \\ $$$$\Rightarrow\mathrm{tan}\:\alpha=\frac{\mathrm{sin}\:\mathrm{40}}{\mathrm{cos}\:\mathrm{40}−\mathrm{2sin}\:\mathrm{20}}=\frac{\mathrm{sin}\:\mathrm{40}}{\mathrm{cos}\:\mathrm{40}−\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{40}\right)}} \\ $$$$\Rightarrow\alpha=\mathrm{tan}^{−\mathrm{1}} \left[\frac{\mathrm{sin}\:\mathrm{40}}{\mathrm{cos}\:\mathrm{40}−\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{40}\right)}}\right]=\mathrm{82}.\mathrm{7}° \\ $$$$\Rightarrow\beta=\mathrm{180}−\alpha=\mathrm{97}.\mathrm{3}° \\ $$