Question Number 95020 by 174 last updated on 22/May/20

Commented by EmericGent last updated on 22/May/20
There is no standard expression of this thing
Answered by niroj last updated on 22/May/20
![I= ∫(x^2 −x)e^x^2 dx = ∫x^2 e^x^2 dx−∫xe^x^2 dx I= I_1 +I_2 I_2 = ∫xe^x^2 dx Put , x^2 = t 2xdx=dt xdx= (1/2)dt I_2 = ∫ e^t (1/2)dt= (1/2)e^t +C= (1/2)e^x^2 +C I_1 = x∫x.e^x^2 dx−∫(1.∫xe^x^2 dx)dx = x.(1/2)e^x^2 −(1/2)∫e^x^2 dx I= I_1 +I_2 = (1/2)xe^x^2 −(1/2)∫e^x^2 dx +(1/2)e^x^2 +C //. = (1/2) e^x^2 (x+1) −(1/2)[ ((√π)/2) error f i(x)]+C Now use more complex number changement either error function for the further integral....](https://www.tinkutara.com/question/Q95063.png)
$$\:\mathrm{I}=\:\int\left(\mathrm{x}^{\mathrm{2}} −\mathrm{x}\right)\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$\:\:\:=\:\int\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}−\int\mathrm{xe}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$\:\:\mathrm{I}=\:{I}_{\mathrm{1}} +{I}_{\mathrm{2}} \\ $$$$\:\:{I}_{\mathrm{2}} =\:\int\mathrm{xe}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$\:\mathrm{Put}\:,\:\mathrm{x}^{\mathrm{2}} =\:\mathrm{t} \\ $$$$\:\:\:\:\mathrm{2xdx}=\mathrm{dt} \\ $$$$\:\:\:\:\:\:\mathrm{xdx}=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{dt} \\ $$$$\:\:\:\mathrm{I}_{\mathrm{2}} =\:\:\int\:\mathrm{e}^{\mathrm{t}} \frac{\mathrm{1}}{\mathrm{2}}\mathrm{dt}=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{\mathrm{t}} +\mathrm{C}=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\mathrm{C} \\ $$$$\:\:\:\mathrm{I}_{\mathrm{1}} =\:\:\:\:\mathrm{x}\int\mathrm{x}.\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}−\int\left(\mathrm{1}.\int\mathrm{xe}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\right)\mathrm{dx} \\ $$$$\:\:\:\:\:=\:\:\mathrm{x}.\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } −\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$\:\:\mathrm{I}=\:\mathrm{I}_{\mathrm{1}} +\mathrm{I}_{\mathrm{2}} \\ $$$$\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{xe}^{\mathrm{x}^{\mathrm{2}} } −\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \mathrm{dx}\:+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } +\mathrm{C}\://. \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } \left(\mathrm{x}+\mathrm{1}\right)\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}\left[\:\frac{\sqrt{\pi}}{\mathrm{2}}\:\mathrm{error}\:\mathrm{f}\:\mathrm{i}\left(\mathrm{x}\right)\right]+\mathrm{C} \\ $$$$\:\:\:\:{N}\mathrm{ow}\:\mathrm{use}\:\mathrm{more}\:\:\mathrm{complex}\:\mathrm{number}\:\mathrm{changement}\:\:\mathrm{either}\:\mathrm{error}\:\mathrm{function} \\ $$$$\:\mathrm{for}\:\:\mathrm{the}\:\mathrm{further}\:\mathrm{integral}…. \\ $$$$\: \\ $$