Question Number 33767 by artibunja last updated on 23/Apr/18

Answered by MJS last updated on 23/Apr/18
![(x−3)^2 >0 with x∈R\{3} ⇒ multiplication with denominator doesn′t change sign x^2 −7∣x∣+10<0 case 1.: x<0 x^2 +7x+10<0 (x+2)(x+5)<0 ⇒ [(x+2)<0∧(x+5)>0]∨[(x+2)>0∧(x+5)<0] case 1.1.: x<−2∧x>−5 ⇒ x∈]−5;−2[ case 1.2.: x>−2∧x<−5 ⇒ no solution case 2.: x≥0 x^2 −7x+10<0 (x−2)(x−5)<0 ⇒ [(x−2)<0∧(x−5)>0]∨[(x−2)>0∧(x−5)<0] case 2.1.: x<2∧x>5 ⇒ no solution case 2.2.: x>2∧x<5 ⇒ x∈]2;5[ at x=3 the limit of the function is −∞<0 solution is x∈]−5;−2[ ∩ ]2;5[ or ∣x∣∈]2;5[ or 2<∣x∣<5](https://www.tinkutara.com/question/Q33772.png)
$$\left({x}−\mathrm{3}\right)^{\mathrm{2}} >\mathrm{0}\:\mathrm{with}\:{x}\in\mathbb{R}\backslash\left\{\mathrm{3}\right\}\:\Rightarrow\:\mathrm{multiplication} \\ $$$$\mathrm{with}\:\mathrm{denominator}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{change}\:\mathrm{sign} \\ $$$${x}^{\mathrm{2}} −\mathrm{7}\mid{x}\mid+\mathrm{10}<\mathrm{0} \\ $$$$\mathrm{case}\:\mathrm{1}.: \\ $$$${x}<\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\mathrm{7}{x}+\mathrm{10}<\mathrm{0} \\ $$$$\left({x}+\mathrm{2}\right)\left({x}+\mathrm{5}\right)<\mathrm{0}\:\Rightarrow \\ $$$$\left[\left({x}+\mathrm{2}\right)<\mathrm{0}\wedge\left({x}+\mathrm{5}\right)>\mathrm{0}\right]\vee\left[\left({x}+\mathrm{2}\right)>\mathrm{0}\wedge\left({x}+\mathrm{5}\right)<\mathrm{0}\right] \\ $$$$\mathrm{case}\:\mathrm{1}.\mathrm{1}.: \\ $$$${x}<−\mathrm{2}\wedge{x}>−\mathrm{5}\:\Rightarrow \\ $$$$\left.{x}\in\right]−\mathrm{5};−\mathrm{2}\left[\right. \\ $$$$\mathrm{case}\:\mathrm{1}.\mathrm{2}.: \\ $$$${x}>−\mathrm{2}\wedge{x}<−\mathrm{5}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$$$\mathrm{case}\:\mathrm{2}.: \\ $$$${x}\geqslant\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{10}<\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}−\mathrm{5}\right)<\mathrm{0}\:\Rightarrow \\ $$$$\left[\left({x}−\mathrm{2}\right)<\mathrm{0}\wedge\left({x}−\mathrm{5}\right)>\mathrm{0}\right]\vee\left[\left({x}−\mathrm{2}\right)>\mathrm{0}\wedge\left({x}−\mathrm{5}\right)<\mathrm{0}\right] \\ $$$$\mathrm{case}\:\mathrm{2}.\mathrm{1}.: \\ $$$${x}<\mathrm{2}\wedge{x}>\mathrm{5}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$$$\mathrm{case}\:\mathrm{2}.\mathrm{2}.: \\ $$$${x}>\mathrm{2}\wedge{x}<\mathrm{5}\:\Rightarrow \\ $$$$\left.{x}\in\right]\mathrm{2};\mathrm{5}\left[\right. \\ $$$$ \\ $$$$\mathrm{at}\:{x}=\mathrm{3}\:\mathrm{the}\:\mathrm{limit}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is}\:−\infty<\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{solution}\:\mathrm{is}\:{x}\in\right]−\mathrm{5};−\mathrm{2}\left[\:\cap\:\right]\mathrm{2};\mathrm{5}\left[\:\:\:\:\:\mathrm{or}\right. \\ $$$$\left.\mid{x}\mid\in\right]\mathrm{2};\mathrm{5}\left[\:\:\:\:\:\mathrm{or}\:\:\:\:\:\mathrm{2}<\mid{x}\mid<\mathrm{5}\right. \\ $$
Commented by NECx last updated on 24/Apr/18

$${wow}….{Thank}\:{you}\:{so}\:{much} \\ $$