Question Number 105632 by Ar Brandon last updated on 30/Jul/20
![Given I_n =∫_0 ^1 (((1−x)^n )/(n!))e^x dx , n∈N a\Show that ∀x∈[0,1], (1−x)^n e^x ≤e and deduce that the Sequence (I_n )_n converges to zero. b\Establish a recurrence relation between I_n and I_(n+1) c\ Deduce that e=lim_(n→∞) Σ_(k=0) ^n ((1/(k!)))](https://www.tinkutara.com/question/Q105632.png)
$$\mathrm{Given}\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{\mathrm{x}} \mathrm{dx}\:,\:\mathrm{n}\in\mathbb{N} \\ $$$$\mathrm{a}\backslash\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right],\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \mathrm{e}^{\mathrm{x}} \leqslant\mathrm{e}\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{Sequence}\:\left(\mathrm{I}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{converges}\:\mathrm{to}\:\mathrm{zero}. \\ $$$$\mathrm{b}\backslash\mathrm{Establish}\:\mathrm{a}\:\mathrm{recurrence}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{I}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{I}_{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{c}\backslash\:\mathrm{Deduce}\:\mathrm{that}\:\mathrm{e}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{k}!}\right) \\ $$
Answered by mathmax by abdo last updated on 31/Jul/20
![1)x∈[0,1] ⇒e^x ≤e and (1−x)^n ≤1 ⇒(1−x)^n e^x ≤e ⇒ (((1−x)^n )/(n!))e^x ≤(e/(n!)) ⇒∫_0 ^1 (((1−x)^n )/(n!))e^x dx ≤(e/(n!)) →0(n→+∞) ⇒ lim_(n→+∞) I_n =0 2) we have I_(n+1) =(1/((n+1)!))∫_0 ^1 (1−x)^(n+1) e^x dx ⇒(n+1)!I_(n+1) =∫_0 ^1 (1−x)^(n+1) e^x by parts u =(1−x)^(n+1) [and v^′ =e^x ⇒∫_0 ^1 (1−x)^(n+1) e^x dx =[(1−x)^(n+1) e^x ]_0 ^1 −∫_0 ^1 −(n+1)(1−x)^n e^x dx =−1 +(n+1)∫_0 ^1 (1−x)^n e^x dx =−1+(n+1)n! I_n =−1+(n+1)! I_n (n+1)! I_(n+1) =−1+(n+1)!I_n ⇒I_(n+1) =I_n −(1/((n+1)!)) ⇒ (1/((n+1)!)) =I_n −I_(n+1) ⇒Σ_(k=0) ^n (1/((k+1)!)) =Σ_(k=0) ^n (I_k −I_(k+1) ) ⇒ Σ_(k=1) ^(n+1) (1/(k!)) =I_o −I_(n+1) +1 ⇒lim_(n→+∞) Σ_(k=1) ^(n+1) (1/(k!)) =I_0 +1 ⇒ Σ_(k=0) ^∞ (1/(k!)) =I_o +1 but I_0 =∫_0 ^1 e^x =e−1 ⇒Σ_(k=0) ^∞ (1/(k!)) =e](https://www.tinkutara.com/question/Q105798.png)
$$\left.\mathrm{1}\right)\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\Rightarrow\mathrm{e}^{\mathrm{x}} \:\leqslant\mathrm{e}\:\mathrm{and}\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\leqslant\mathrm{1}\:\Rightarrow\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{x}} \:\leqslant\mathrm{e}\:\Rightarrow \\ $$$$\frac{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{\mathrm{x}} \:\leqslant\frac{\mathrm{e}}{\mathrm{n}!}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:\leqslant\frac{\mathrm{e}}{\mathrm{n}!}\:\rightarrow\mathrm{0}\left(\mathrm{n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{I}_{\mathrm{n}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{I}_{\mathrm{n}+\mathrm{1}} =\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx} \\ $$$$\Rightarrow\left(\mathrm{n}+\mathrm{1}\right)!\mathrm{I}_{\mathrm{n}+\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \:\mathrm{e}^{\mathrm{x}} \:\:\mathrm{by}\:\mathrm{parts}\:\mathrm{u}\:=\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \left[\mathrm{and}\:\mathrm{v}^{'} =\mathrm{e}^{\mathrm{x}} \right. \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:=\left[\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \mathrm{e}^{\mathrm{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} −\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx} \\ $$$$=−\mathrm{1}\:+\left(\mathrm{n}+\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:=−\mathrm{1}+\left(\mathrm{n}+\mathrm{1}\right)\mathrm{n}!\:\mathrm{I}_{\mathrm{n}} =−\mathrm{1}+\left(\mathrm{n}+\mathrm{1}\right)!\:\mathrm{I}_{\mathrm{n}} \\ $$$$\left(\mathrm{n}+\mathrm{1}\right)!\:\mathrm{I}_{\mathrm{n}+\mathrm{1}} =−\mathrm{1}+\left(\mathrm{n}+\mathrm{1}\right)!\mathrm{I}_{\mathrm{n}} \:\Rightarrow\mathrm{I}_{\mathrm{n}+\mathrm{1}} =\mathrm{I}_{\mathrm{n}} −\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\:=\mathrm{I}_{\mathrm{n}} −\mathrm{I}_{\mathrm{n}+\mathrm{1}} \:\Rightarrow\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{1}\right)!}\:=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \left(\mathrm{I}_{\mathrm{k}} −\mathrm{I}_{\mathrm{k}+\mathrm{1}} \right)\:\Rightarrow \\ $$$$\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}+\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{I}_{\mathrm{o}} −\mathrm{I}_{\mathrm{n}+\mathrm{1}} +\mathrm{1}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}+\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{I}_{\mathrm{0}} +\mathrm{1}\:\Rightarrow \\ $$$$\sum_{\mathrm{k}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{I}_{\mathrm{o}} +\mathrm{1}\:\:\mathrm{but}\:\mathrm{I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{x}} \:=\mathrm{e}−\mathrm{1}\:\Rightarrow\sum_{\mathrm{k}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{e} \\ $$
Commented by Ar Brandon last updated on 31/Jul/20
Merci monsieur
Commented by mathmax by abdo last updated on 01/Aug/20

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}. \\ $$