Question Number 172555 by cortano1 last updated on 28/Jun/22

$$\:\:\:\:\:\:\underset{\mathrm{1}/\mathrm{5}} {\overset{\mathrm{5}} {\int}}\:\frac{\mathrm{arctan}\:\left({x}\right)}{{x}}\:{dx}\:=? \\ $$
Commented by greougoury555 last updated on 28/Jun/22

$$\:=\:\mathrm{ln}\:\sqrt{\mathrm{5}^{\pi} }\:=\:\frac{\pi}{\mathrm{2}}\:\mathrm{ln}\:\mathrm{5} \\ $$
Commented by cortano1 last updated on 29/Jun/22

Commented by shikaridwan last updated on 29/Jun/22

$${Generally}\:\int_{\mathrm{1}/{a}} ^{{a}} \frac{\mathrm{tan}^{−\mathrm{1}} {x}}{{x}}{dx}=\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\left({a}\right) \\ $$
Answered by Mathspace last updated on 28/Jun/22

$$\Upsilon=\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \frac{{arctanx}}{{x}}{dx} \\ $$$$\Upsilon=_{{x}=\frac{\mathrm{1}}{{t}}} \:\:\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{−{arctan}\left({t}\right)}{\frac{\mathrm{1}}{{t}}}\left(−\frac{{dt}}{{t}^{\mathrm{2}} }\right) \\ $$$$=−\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \:\:\frac{{arctant}}{{t}}{dt}=−\Upsilon\:\Rightarrow \\ $$$$\mathrm{2}\Upsilon=\mathrm{0}\:\Rightarrow\Upsilon=\mathrm{0} \\ $$
Commented by cortano1 last updated on 29/Jun/22

$${wrong} \\ $$
Commented by cortano1 last updated on 29/Jun/22

Answered by Ar Brandon last updated on 29/Jun/22
![∫_5 ^(1/5) ((arctanx)/x)dx =[lnx∙arctanx]_5 ^(1/5) −∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx =−ln5(arctan((1/5))+arctan(5))−∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx I=∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx , x=(1/t) ⇒dx=−(1/t^2 )dt I=∫_(1/5) ^5 ((lnt)/(1+(1/t^2 )))∙(1/t^2 )dt=∫_(1/5) ^5 ((lnt)/(1+t^2 ))dt=−∫_5 ^(1/5) ((lnt)/(1+t^2 ))dt 2I=∫_5 ^(1/5) ((lnx)/(1+x^2 ))dx−∫_5 ^(1/5) ((lnt)/(1+t^2 ))dt=0 ⇒I=0 ⇒∫_5 ^(1/5) ((arctanx)/x)dx=−ln5(arctan((1/5))+arctan(5))=−(π/2)ln5](https://www.tinkutara.com/question/Q172591.png)
$$\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{arctan}{x}}{{x}}{dx} \\ $$$$\:\:\:=\left[\mathrm{ln}{x}\centerdot\mathrm{arctan}{x}\right]_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} −\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$\:\:\:=−\mathrm{ln5}\left(\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)+\mathrm{arctan}\left(\mathrm{5}\right)\right)−\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${I}=\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\:,\:{x}=\frac{\mathrm{1}}{{t}}\:\Rightarrow{dx}=−\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt} \\ $$$${I}=\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \frac{\mathrm{ln}{t}}{\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }}\centerdot\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{dt}=\int_{\frac{\mathrm{1}}{\mathrm{5}}} ^{\mathrm{5}} \frac{\mathrm{ln}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=−\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$$$\mathrm{2}{I}=\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}−\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{ln}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\mathrm{0}\:\Rightarrow{I}=\mathrm{0} \\ $$$$\Rightarrow\int_{\mathrm{5}} ^{\frac{\mathrm{1}}{\mathrm{5}}} \frac{\mathrm{arctan}{x}}{{x}}{dx}=−\mathrm{ln5}\left(\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{5}}\right)+\mathrm{arctan}\left(\mathrm{5}\right)\right)=−\frac{\pi}{\mathrm{2}}\mathrm{ln5} \\ $$
Commented by shikaridwan last updated on 29/Jun/22

$$ \\ $$🥲.
Commented by shikaridwan last updated on 29/Jun/22

$${hey}! \\ $$
Commented by Ar Brandon last updated on 29/Jun/22
Hey bro Are you back for real? I missed you so much
Commented by Ar Brandon last updated on 29/Jun/22
I tried reaching you inbox but couldn't.
Commented by Rasheed.Sindhi last updated on 29/Jun/22

Happy to see you both meeting in the forum once again! 🌷🌺🌹🥀
Commented by Ar Brandon last updated on 29/Jun/22
Thanks Sir
Answered by CElcedricjunior last updated on 01/Jul/22
![∫_(1/5) ^5 ((arctanx)/x)dx=k posons { ((u=arctanx)),((v′=(1/x))) :}=> { ((u′=(1/(1+x^2 )))),((v=ln(x))) :} =[arctanx×lmx]_(1/5) ^5 −∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx =ln(5)(arctan(5)+arctan((1/5)))−∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx posonsM=∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx=? posons x=(1/t)=>dx=−(1/t^2 )dt qd: { ((x−>5)),((x−>(1/5))) :}=> { ((t−>(1/5))),((t→5)) :} =∫_5 ^(1/5) −((ln((1/t)))/(1+(1/t^2 )))×(1/t^2 )dt =−∫_(1/5) ^5 ((lnt)/(1+t^2 ))dt =>∫_(1/5) ^5 ((lnx)/(1+x^2 ))dx=0 =>∫_(1/5) ^5 ((arctanx)/x)dx=ln5(arctan5+arctan((1/5))) or ∀x∈R^∗ on a arctan(x)+arctan((1/x))=(𝛑/2) =>∫_(1/5_ ) ^5 ((arctanx)/(1+x^2 ))dx=(𝛑/2)ln5 .........Le ce^](https://www.tinkutara.com/question/Q172748.png)