Question Number 172944 by flor last updated on 03/Jul/22

$$\int\int_{{d}} {dxdy}\:\:\:\:\:\:{x}={y}^{\mathrm{2}} −\mathrm{1}\:\:\:\:\:\:{x}=\mathrm{1}−{y} \\ $$$${D}=? \\ $$
Commented by kaivan.ahmadi last updated on 04/Jul/22

$${x}={y}^{\mathrm{2}} −\mathrm{1}\Rightarrow{y}^{\mathrm{2}} ={x}+\mathrm{1}\Rightarrow{y}=\pm\sqrt{{x}+\mathrm{1}} \\ $$$${D}_{\mathrm{1}} : \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{0}\:\:,\:−\sqrt{{x}+\mathrm{1}}\leqslant{y}\leqslant\sqrt{{x}+\mathrm{1}} \\ $$$$−−−−−−−−−−−−− \\ $$$${y}=\mathrm{1}−{x}\Rightarrow{y}=\mathrm{1}−{y}^{\mathrm{2}} +\mathrm{1}\Rightarrow{y}^{\mathrm{2}} −{y}−\mathrm{2}=\mathrm{0} \\ $$$$\left({y}−\mathrm{2}\right)\left({y}+\mathrm{1}\right)=\mathrm{0}\Rightarrow{y}=\mathrm{2},−\mathrm{1} \\ $$$${if}\:{y}=−\mathrm{1}\Rightarrow{x}=\mathrm{1}−{y}=\mathrm{1}+\mathrm{1}=\mathrm{2} \\ $$$${D}_{\mathrm{2}} : \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{2}\:\:,\:−\sqrt{{x}+\mathrm{1}}\leqslant{y}\leqslant\mathrm{1}−{x} \\ $$$$−−−−−−−−−−−−− \\ $$$${D}={D}_{\mathrm{1}} \cup{D}_{\mathrm{2}} \\ $$$$ \\ $$
Answered by kaivan.ahmadi last updated on 04/Jul/22

Commented by kaivan.ahmadi last updated on 04/Jul/22

$${red}\:{line}:\:{y}=\mathrm{1}−{x} \\ $$
Commented by CElcedricjunior last updated on 05/Jul/22
![A=∫_(−1) ^1 ∫_(y−1) ^(y^2 −1) dxdy =∫_(−1) ^1 [x]_(y−1) ^(y^2 −1) dy =∫_(−1) ^1 (y^2 −y)dy =[(y^3 /3)+(y^2 /2)+2y]_(−1) ^1 =(2/3) A=(2/3) .........Le ce^](https://www.tinkutara.com/question/Q173039.png)