Question Number 107515 by mohammad17 last updated on 11/Aug/20

$$\int\frac{{x}^{\mathrm{4}} }{\mathrm{1}+{x}^{\mathrm{8}} }{dx} \\ $$
Answered by Ar Brandon last updated on 11/Aug/20
![I=∫(x^4 /(1+x^8 ))dx Let x^8 +1=0 ⇒ x_k ^8 =e^((2k+1)iπ) ⇒ x_k =e^((((2k+1)/8))iπ) k∈[0,7] ⇒x^8 +1=Π_(k=0) ^7 (x−x_k ) ⇒∫(x^4 /(1+x^8 ))dx=∫(x^4 /(Π_(k=0) ^7 (x−x_k )))dx=∫{Σ_(k=0) ^7 (a_k /(x−x_k ))dx} a_k =(x_k ^4 /(8x_k ^7 ))=−(x_k ^5 /8) ⇒∫(x^4 /(1+x^8 ))dx=−(1/8)Σ_(k=0) ^7 {∫(x_k ^5 /(x−x_k ))dx} ⇒∫(x^4 /(1+x^8 ))dx=−(1/8)[Σ_(k=0) ^7 x_k ^5 ln∣x−x_k ∣]+C, x_k =e^((((2k+1)/8))iπ)](https://www.tinkutara.com/question/Q107522.png)
$$\mathrm{I}=\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx} \\ $$$$\mathrm{Let}\:\mathrm{x}^{\mathrm{8}} +\mathrm{1}=\mathrm{0}\:\Rightarrow\:\mathrm{x}_{\mathrm{k}} ^{\mathrm{8}} =\mathrm{e}^{\left(\mathrm{2k}+\mathrm{1}\right)\mathrm{i}\pi} \:\Rightarrow\:\mathrm{x}_{\mathrm{k}} =\mathrm{e}^{\left(\frac{\mathrm{2k}+\mathrm{1}}{\mathrm{8}}\right)\mathrm{i}\pi} \mathrm{k}\in\left[\mathrm{0},\mathrm{7}\right] \\ $$$$\Rightarrow\mathrm{x}^{\mathrm{8}} +\mathrm{1}=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\prod}}\left(\mathrm{x}−\mathrm{x}_{\mathrm{k}} \right) \\ $$$$\Rightarrow\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}=\int\frac{\mathrm{x}^{\mathrm{4}} }{\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\prod}}\left(\mathrm{x}−\mathrm{x}_{\mathrm{k}} \right)}\mathrm{dx}=\int\left\{\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\frac{\mathrm{a}_{\mathrm{k}} }{\mathrm{x}−\mathrm{x}_{\mathrm{k}} }\mathrm{dx}\right\} \\ $$$$\mathrm{a}_{\mathrm{k}} =\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{4}} }{\mathrm{8x}_{\mathrm{k}} ^{\mathrm{7}} }=−\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} }{\mathrm{8}} \\ $$$$\Rightarrow\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}=−\frac{\mathrm{1}}{\mathrm{8}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\left\{\int\frac{\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} }{\mathrm{x}−\mathrm{x}_{\mathrm{k}} }\mathrm{dx}\right\} \\ $$$$\Rightarrow\int\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{1}+\mathrm{x}^{\mathrm{8}} }\mathrm{dx}=−\frac{\mathrm{1}}{\mathrm{8}}\left[\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{7}} {\sum}}\mathrm{x}_{\mathrm{k}} ^{\mathrm{5}} \mathrm{ln}\mid\mathrm{x}−\mathrm{x}_{\mathrm{k}} \mid\right]+\mathcal{C},\:\:\mathrm{x}_{\mathrm{k}} =\mathrm{e}^{\left(\frac{\mathrm{2k}+\mathrm{1}}{\mathrm{8}}\right)\mathrm{i}\pi} \\ $$
Commented by mohammad17 last updated on 11/Aug/20

$${thank}\:{you}\:{sir}\:.\:{can}\:{you}\:{solve}\:{by}\:{different}\:{method}\:? \\ $$
Commented by Ar Brandon last updated on 11/Aug/20
Not yet. Do you face difficulties with this ?
Commented by Ar Brandon last updated on 11/Aug/20
