Question Number 108697 by 150505R last updated on 18/Aug/20

Answered by mathmax by abdo last updated on 18/Aug/20
![I =∫_0 ^∞ (((lnx)^2 )/(1+x^2 )) dx ⇒ I =∫_0 ^1 (((lnx)^2 )/(1+x^2 ))dx +∫_1 ^(+∞) (((lnx)^2 )/(1+x^2 ))dx(→x=(1/t)) =∫_0 ^1 (((lnx)^2 )/(1+x^2 ))dx −∫_0 ^1 (((lnt)^2 )/(1+(1/t^2 )))(−(dt/t^2 )) =2∫_0 ^1 (((lnx)^2 )/(1+x^2 ))dx =2 ∫_0 ^1 (lnx)^2 Σ_(n=0) ^∞ (−1)^n x^(2n) dx =2Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(2n) (lnx)^2 dx =2Σ_(n=0) ^∞ (−1)^n A_n A_n =∫_0 ^1 x^(2n) (lnx)^2 dx =_(by psrts) [(x^(2n+1) /(2n+1))(lnx)^2 ]_0 ^1 −∫_0 ^1 (x^(2n+1) /(2n+1))((2ln(x))/x)dx =−(2/(2n+1)) ∫_0 ^1 x^(2n) lnxdx =−(2/(2n+1)){ [ (x^(2n+1) /(2n+1))lnx]_0 ^1 −∫_0 ^1 (x^(2n) /(2n+1))dx} =−(2/(2n+1)){−(1/((2n+1)^2 ))} =(2/((2n+1)^3 )) ⇒ I =4 Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^3 )) rest to find the value of this serie by fourier ...be continued....](https://www.tinkutara.com/question/Q108716.png)
$$\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:+\int_{\mathrm{1}} ^{+\infty} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\left(\rightarrow\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}\right) \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnt}\right)^{\mathrm{2}} }{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} }}\left(−\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} }\right)\:=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{lnx}\right)^{\mathrm{2}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{lnx}\right)^{\mathrm{2}} \:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{x}^{\mathrm{2n}} \mathrm{dx}\:=\mathrm{2}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \left(\mathrm{lnx}\right)^{\mathrm{2}} \:\mathrm{dx} \\ $$$$=\mathrm{2}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \:\mathrm{A}_{\mathrm{n}} \\ $$$$\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \left(\mathrm{lnx}\right)^{\mathrm{2}} \:\mathrm{dx}\:=_{\mathrm{by}\:\mathrm{psrts}} \left[\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\left(\mathrm{lnx}\right)^{\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\frac{\mathrm{2ln}\left(\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=−\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{1}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\mathrm{2n}} \:\mathrm{lnxdx}\:=−\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{1}}\left\{\:\left[\:\:\frac{\mathrm{x}^{\mathrm{2n}+\mathrm{1}} }{\mathrm{2n}+\mathrm{1}}\mathrm{lnx}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{x}^{\mathrm{2n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{dx}\right\} \\ $$$$=−\frac{\mathrm{2}}{\mathrm{2n}+\mathrm{1}}\left\{−\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} }\right\}\:=\frac{\mathrm{2}}{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} }\:\Rightarrow \\ $$$$\mathrm{I}\:=\mathrm{4}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{3}} }\:\:\mathrm{rest}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{this}\:\mathrm{serie}\:\mathrm{by}\:\mathrm{fourier} \\ $$$$…\mathrm{be}\:\mathrm{continued}…. \\ $$$$ \\ $$
Commented by 150505R last updated on 18/Aug/20

$${thanks}\:{a}\:{lot}\:{sir}… \\ $$
Commented by mathdave last updated on 18/Aug/20

$${u}\:{ve}\:{tried}\:{let}\:{me}\:{complet}\:{d}\:{rest} \\ $$
Commented by abdomsup last updated on 18/Aug/20

$${you}\:{are}\:{welcome}\:{sir} \\ $$