Menu Close

exercise-Consider-a-polygon-with-an-odd-number-of-vertices-We-connect-any-3-vertices-of-this-polygon-to-form-a-triangle-What-is-the-probability-that-this-triangle-contains-the-center-of-the-circ




Question Number 175409 by henderson last updated on 29/Aug/22
exercise  Consider a polygon with an odd number 𝗻 of vertices. We connect any 3 vertices of this polygon to form a triangle.    What is the probability that this triangle contains the center of the circle circumscribing the polygon?
$$\mathrm{exercise} \\ $$Consider a polygon with an odd number 𝗻 of vertices. We connect any 3 vertices of this polygon to form a triangle.

What is the probability that this triangle contains the center of the circle circumscribing the polygon?

Commented by nikif99 last updated on 01/Sep/22
I think there is no solution for non  regular polygons.
$${I}\:{think}\:{there}\:{is}\:{no}\:{solution}\:{for}\:{non} \\ $$$${regular}\:{polygons}. \\ $$
Commented by greg_ed last updated on 31/Aug/22
no idea !
$$\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{idea}}\:! \\ $$
Commented by mr W last updated on 04/Sep/22
then consider it as regular polygon  and try to solve it.
$${then}\:{consider}\:{it}\:{as}\:{regular}\:{polygon} \\ $$$${and}\:{try}\:{to}\:{solve}\:{it}. \\ $$
Commented by nikif99 last updated on 04/Jan/26
β€’ Results are checked via Python and  Fortran developed software.  An indicative output is here.  β€’ As n increases, probability trends  to 0.25
$$\bullet\:{Results}\:{are}\:{checked}\:{via}\:{Python}\:{and} \\ $$$${Fortran}\:{developed}\:{software}. \\ $$$${An}\:{indicative}\:{output}\:{is}\:{here}. \\ $$$$\bullet\:{As}\:{n}\:{increases},\:{probability}\:{trends} \\ $$$${to}\:\mathrm{0}.\mathrm{25} \\ $$
Commented by nikif99 last updated on 04/Jan/26
Answered by nikif99 last updated on 04/Jan/26
This is obtained after a communication to a  math forum (quora.com) and the valuable  help and solution of Steven Smith.  β€’ a, b, c are the sides of a reg. n-gon with a≀b≀c  β€’ Their length does not exceed d=⌊n/2βŒ‹  β€’ Schema is named a set of triples {a, b, c}  indifferently of their order, summing up n.  Each schema is repeated kΓ—n cases {k∈N}  except for equilateral triangles where only  n/3 cases occur.  (for a 9-gon 3 schemas exist: {1,4,4} (1Γ—9  cases, k=1), {2,3,4} (2Γ—9 cases), {3,3,3} (9/3 cases)  Using stars and bars and inclusion-exclusion  principle, the number of 3-tuples (not  combinations) is calculated  S=Ξ£_(i=0) ^2 [(βˆ’1)^i  ((3),(i) ) (((nβˆ’iΓ—dβˆ’1)),((           2)) )] (1)  Then to change into permutations, we need to  substract how many of those have at least  2 identical elements  3⌊((nβˆ’2Γ—βŒˆ((nβˆ’d)/2)βŒ‰+1)/2)βŒ‹βˆ’2(n%3==0)  The term 2(n%3==0) expresses the reduction  by 2 when n is a multiple of 3, i.e an equilateral  triangle is formed with a=b=c.  After subtracting, we get the number of  permutations, and then to change into  combinations we divide by (3!) to reach the  number of combinations B. This is the numver  of schemas for a given n-gon.  B=((SΒ±3⌊((nβˆ’2Γ—βŒˆ((nβˆ’d)/2)βŒ‰+1)/2)βŒ‹+2(n%3==0))/6) (2)  Remarks for (2)  -When calculating  ((p),(q) ) becomes unattainable  (i.e p<1 or p<q) the result is set to 0.  -Signing the 2nd term of the numerator by (+)  you allow tuples with repeated elements, like  {5,5,7}, (in other words is the number of  schemas), while by (βˆ’) not.  {Another formula to obtain tbe number of  schemas is  Ξ£_(i=⌈n/3βŒ‰) ^(⌊n/2βŒ‹) (iβˆ’βŒˆ((nβˆ’i)/2)βŒ‰+1)  }  In the preceding formula (2) we omit the 2nd  term of the numerator, then multiplying by 2  the sum of k factors is obtained.  K=((S+2(n%3==0))/3)  Therefore, the number of requested triangles  could be  A=Kβˆ™n  In the case of equilateral triangle, a full value  of k is counted, so we reduce by 2n/3.  A=Kβˆ™nβˆ’((2n)/3)(n%3==0)  Therefore, the number of triangles enclosing  the circumcenter is  A=((S+2(n%3==0))/3)βˆ™nβˆ’((2n)/3)(n%3==0)  which after simplification and restoring S  from (1) turns into  A=((Ξ£_(i=0) ^2 [(βˆ’1)^i  ((3),(i) ) (((nβˆ’iΓ—dβˆ’1)),((           2)) )])/3)βˆ™n  Finally, the demanded probability is   determinant (((P=((Ξ£_(i=0) ^2 [(βˆ’1)^i  ((3),(i) ) (((nβˆ’iΓ—dβˆ’1)),((           2)) )]n)/(3 ((n),(3) ))))))
$${This}\:{is}\:{obtained}\:{after}\:{a}\:{communication}\:{to}\:{a} \\ $$$${math}\:{forum}\:\left({quora}.{com}\right)\:{and}\:{the}\:{valuable} \\ $$$${help}\:{and}\:{solution}\:{of}\:{Steven}\:{Smith}. \\ $$$$\bullet\:{a},\:{b},\:{c}\:{are}\:{the}\:{sides}\:{of}\:{a}\:{reg}.\:{n}-{gon}\:{with}\:{a}\leqslant{b}\leqslant{c} \\ $$$$\bullet\:{Their}\:{length}\:{does}\:{not}\:{exceed}\:{d}=\lfloor{n}/\mathrm{2}\rfloor \\ $$$$\bullet\:{Schema}\:{is}\:{named}\:{a}\:{set}\:{of}\:{triples}\:\left\{{a},\:{b},\:{c}\right\} \\ $$$${indifferently}\:{of}\:{their}\:{order},\:{summing}\:{up}\:{n}. \\ $$$${Each}\:{schema}\:{is}\:{repeated}\:{k}Γ—{n}\:{cases}\:\left\{{k}\in\mathbb{N}\right\} \\ $$$${except}\:{for}\:{equilateral}\:{triangles}\:{where}\:{only} \\ $$$${n}/\mathrm{3}\:{cases}\:{occur}. \\ $$$$\left({for}\:{a}\:\mathrm{9}-{gon}\:\mathrm{3}\:{schemas}\:{exist}:\:\left\{\mathrm{1},\mathrm{4},\mathrm{4}\right\}\:\left(\mathrm{1}Γ—\mathrm{9}\right.\right. \\ $$$$\left.{cases},\:{k}=\mathrm{1}\right),\:\left\{\mathrm{2},\mathrm{3},\mathrm{4}\right\}\:\left(\mathrm{2}Γ—\mathrm{9}\:{cases}\right),\:\left\{\mathrm{3},\mathrm{3},\mathrm{3}\right\}\:\left(\mathrm{9}/\mathrm{3}\:{cases}\right) \\ $$$$\boldsymbol{{Using}}\:{stars}\:{and}\:{bars}\:{and}\:{inclusion}-{exclusion} \\ $$$${principle},\:{the}\:{number}\:{of}\:\mathrm{3}-{tuples}\:\left({not}\right. \\ $$$$\left.{combinations}\right)\:{is}\:{calculated} \\ $$$${S}=\underset{{i}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}\left[\left(βˆ’\mathrm{1}\right)^{{i}} \begin{pmatrix}{\mathrm{3}}\\{{i}}\end{pmatrix}\begin{pmatrix}{{n}βˆ’{i}Γ—{d}βˆ’\mathrm{1}}\\{\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix}\right]\:\left(\mathrm{1}\right) \\ $$$${Then}\:{to}\:{change}\:{into}\:{permutations},\:{we}\:{need}\:{to} \\ $$$${substract}\:{how}\:{many}\:{of}\:{those}\:{have}\:{at}\:{least} \\ $$$$\mathrm{2}\:{identical}\:{elements} \\ $$$$\mathrm{3}\lfloor\frac{{n}βˆ’\mathrm{2}Γ—\lceil\frac{{n}βˆ’{d}}{\mathrm{2}}\rceil+\mathrm{1}}{\mathrm{2}}\rfloorβˆ’\mathrm{2}\left({n\%}\mathrm{3}==\mathrm{0}\right) \\ $$$${The}\:{term}\:\mathrm{2}\left({n\%}\mathrm{3}==\mathrm{0}\right)\:{expresses}\:{the}\:{reduction} \\ $$$${by}\:\mathrm{2}\:{when}\:{n}\:{is}\:{a}\:{multiple}\:{of}\:\mathrm{3},\:{i}.{e}\:{an}\:{equilateral} \\ $$$${triangle}\:{is}\:{formed}\:{with}\:{a}={b}={c}. \\ $$$${After}\:{subtracting},\:{we}\:{get}\:{the}\:{number}\:{of} \\ $$$${permutations},\:{and}\:{then}\:{to}\:{change}\:{into} \\ $$$${combinations}\:{we}\:{divide}\:{by}\:\left(\mathrm{3}!\right)\:{to}\:{reach}\:{the} \\ $$$${number}\:{of}\:{combinations}\:{B}.\:{This}\:{is}\:{the}\:{numver} \\ $$$${of}\:{schemas}\:{for}\:{a}\:{given}\:{n}-{gon}. \\ $$$${B}=\frac{{S}\pm\mathrm{3}\lfloor\frac{{n}βˆ’\mathrm{2}Γ—\lceil\frac{{n}βˆ’{d}}{\mathrm{2}}\rceil+\mathrm{1}}{\mathrm{2}}\rfloor+\mathrm{2}\left({n\%}\mathrm{3}==\mathrm{0}\right)}{\mathrm{6}}\:\left(\mathrm{2}\right) \\ $$$${Remarks}\:{for}\:\left(\mathrm{2}\right) \\ $$$$-{When}\:{calculating}\:\begin{pmatrix}{{p}}\\{{q}}\end{pmatrix}\:{becomes}\:{unattainable} \\ $$$$\left({i}.{e}\:{p}<\mathrm{1}\:{or}\:{p}<{q}\right)\:{the}\:{result}\:{is}\:{set}\:{to}\:\mathrm{0}. \\ $$$$-{Signing}\:{the}\:\mathrm{2}{nd}\:{term}\:{of}\:{the}\:{numerator}\:{by}\:\left(+\right) \\ $$$${you}\:{allow}\:{tuples}\:{with}\:{repeated}\:{elements},\:{like} \\ $$$$\left\{\mathrm{5},\mathrm{5},\mathrm{7}\right\},\:\left({in}\:{other}\:{words}\:{is}\:{the}\:{number}\:{of}\right. \\ $$$$\left.{schemas}\right),\:{while}\:{by}\:\left(βˆ’\right)\:{not}. \\ $$$$\left\{{Another}\:{formula}\:{to}\:{obtain}\:{tbe}\:{number}\:{of}\right. \\ $$$${schemas}\:{is} \\ $$$$\underset{{i}=\lceil{n}/\mathrm{3}\rceil} {\overset{\lfloor{n}/\mathrm{2}\rfloor} {\sum}}\left({i}βˆ’\lceil\frac{{n}βˆ’{i}}{\mathrm{2}}\rceil+\mathrm{1}\right) \\ $$$$\left.\right\} \\ $$$${In}\:{the}\:{preceding}\:{formula}\:\left(\mathrm{2}\right)\:{we}\:{omit}\:{the}\:\mathrm{2}{nd} \\ $$$${term}\:{of}\:{the}\:{numerator},\:{then}\:{multiplying}\:{by}\:\mathrm{2} \\ $$$${the}\:{sum}\:{of}\:{k}\:{factors}\:{is}\:{obtained}. \\ $$$${K}=\frac{{S}+\mathrm{2}\left({n\%}\mathrm{3}==\mathrm{0}\right)}{\mathrm{3}} \\ $$$${Therefore},\:{the}\:{number}\:{of}\:{requested}\:{triangles} \\ $$$${could}\:{be} \\ $$$${A}={K}\centerdot{n} \\ $$$${In}\:{the}\:{case}\:{of}\:{equilateral}\:{triangle},\:{a}\:{full}\:{value} \\ $$$${of}\:{k}\:{is}\:{counted},\:{so}\:{we}\:{reduce}\:{by}\:\mathrm{2}{n}/\mathrm{3}. \\ $$$${A}={K}\centerdot{n}βˆ’\frac{\mathrm{2}{n}}{\mathrm{3}}\left({n\%}\mathrm{3}==\mathrm{0}\right) \\ $$$${Therefore},\:{the}\:{number}\:{of}\:{triangles}\:{enclosing} \\ $$$${the}\:{circumcenter}\:{is} \\ $$$${A}=\frac{{S}+\cancel{\mathrm{2}\left({n\%}\mathrm{3}==\mathrm{0}\right)}}{\mathrm{3}}\centerdot{n}βˆ’\cancel{\frac{\mathrm{2}{n}}{\mathrm{3}}\left({n\%}\mathrm{3}==\mathrm{0}\right)} \\ $$$${which}\:{after}\:{simplification}\:{and}\:{restoring}\:{S} \\ $$$${from}\:\left(\mathrm{1}\right)\:{turns}\:{into} \\ $$$${A}=\frac{\underset{{i}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}\left[\left(βˆ’\mathrm{1}\right)^{{i}} \begin{pmatrix}{\mathrm{3}}\\{{i}}\end{pmatrix}\begin{pmatrix}{{n}βˆ’{i}Γ—{d}βˆ’\mathrm{1}}\\{\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix}\right]}{\mathrm{3}}\centerdot{n} \\ $$$${Finally},\:{the}\:{demanded}\:{probability}\:{is} \\ $$$$\begin{array}{|c|}{{P}=\frac{\underset{{i}=\mathrm{0}} {\overset{\mathrm{2}} {\sum}}\left[\left(βˆ’\mathrm{1}\right)^{{i}} \begin{pmatrix}{\mathrm{3}}\\{{i}}\end{pmatrix}\begin{pmatrix}{{n}βˆ’{i}Γ—{d}βˆ’\mathrm{1}}\\{\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}}\end{pmatrix}\right]{n}}{\mathrm{3}\begin{pmatrix}{{n}}\\{\mathrm{3}}\end{pmatrix}}}\\\hline\end{array} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *