Question Number 189973 by mr W last updated on 25/Mar/23

Commented by mr W last updated on 25/Mar/23

$${find}\:{the}\:{area}\:{and}\:{side}\:{lengths}\:{of}\:{the} \\ $$$${shaded}\:{triangle}. \\ $$
Commented by MJS_new last updated on 25/Mar/23

$$\frac{\mathrm{1}}{\mathrm{7}}\:\mathrm{of}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\Delta{ABC} \\ $$$$\mathrm{I}'\mathrm{ll}\:\mathrm{show}\:\mathrm{my}\:\mathrm{work}\:\mathrm{later} \\ $$
Commented by MJS_new last updated on 25/Mar/23
![btw to a given triangle with sides a, b, c there are 2 possible “inner” triangles with sides o_k , p_k , q_k : o_1 =((√(6a^2 −2b^2 +3c^2 ))/7); o_2 =((√(6a^2 +3b^2 −2c^2 ))/7) [p_k , q_k by cycling a, b, c] it′s easy to solve these for a, b, c with given o, p, q: a_1 =(√(6o^2 +3p^2 −2q^2 )); a_2 =(√(6o^2 −2p^2 +3q^2 )) [again b_k , c_k by cycling o, p, q] all these triangles share the same mass center](https://www.tinkutara.com/question/Q189995.png)
$$\mathrm{btw}\:\mathrm{to}\:\mathrm{a}\:\mathrm{given}\:\mathrm{triangle}\:\mathrm{with}\:\mathrm{sides}\:{a},\:{b},\:{c} \\ $$$$\mathrm{there}\:\mathrm{are}\:\mathrm{2}\:\mathrm{possible}\:“\mathrm{inner}''\:\mathrm{triangles}\:\mathrm{with} \\ $$$$\mathrm{sides}\:{o}_{{k}} ,\:{p}_{{k}} ,\:{q}_{{k}} : \\ $$$${o}_{\mathrm{1}} =\frac{\sqrt{\mathrm{6}{a}^{\mathrm{2}} −\mathrm{2}{b}^{\mathrm{2}} +\mathrm{3}{c}^{\mathrm{2}} }}{\mathrm{7}};\:{o}_{\mathrm{2}} =\frac{\sqrt{\mathrm{6}{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} −\mathrm{2}{c}^{\mathrm{2}} }}{\mathrm{7}} \\ $$$$\left[{p}_{{k}} ,\:{q}_{{k}} \:\mathrm{by}\:\mathrm{cycling}\:{a},\:{b},\:{c}\right] \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{these}\:\mathrm{for}\:{a},\:{b},\:{c}\:\mathrm{with}\:\mathrm{given} \\ $$$${o},\:{p},\:{q}: \\ $$$${a}_{\mathrm{1}} =\sqrt{\mathrm{6}{o}^{\mathrm{2}} +\mathrm{3}{p}^{\mathrm{2}} −\mathrm{2}{q}^{\mathrm{2}} };\:{a}_{\mathrm{2}} =\sqrt{\mathrm{6}{o}^{\mathrm{2}} −\mathrm{2}{p}^{\mathrm{2}} +\mathrm{3}{q}^{\mathrm{2}} } \\ $$$$\left[\mathrm{again}\:{b}_{{k}} ,\:{c}_{{k}} \:\mathrm{by}\:\mathrm{cycling}\:{o},\:{p},\:{q}\right] \\ $$$$\mathrm{all}\:\mathrm{these}\:\mathrm{triangles}\:\mathrm{share}\:\mathrm{the}\:\mathrm{same}\:\mathrm{mass}\:\mathrm{center} \\ $$
Commented by mr W last updated on 25/Mar/23

$${thanks}\:{sir}! \\ $$
Answered by ajfour last updated on 25/Mar/23
