Question Number 60264 by maxmathsup by imad last updated on 19/May/19
![let f(t) =∫_0 ^∞ (e^(−3 [x^2 ]) /(x^2 +t^2 ))dx with t>0 1. determine a explicit form of f(t) 2. find also g(t) =∫_0 ^∞ (e^(−3[x^2 ]) /((x^2 +t^2 )^2 ))dx 3. find the values of integrals ∫_0 ^∞ (e^(−3[x^2 ]) /(x^2 +3))dx and ∫_0 ^∞ (e^(−3[x^2 ]) /((x^2 +4)^2 )) dx .](https://www.tinkutara.com/question/Q60264.png)
$${let}\:{f}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\:\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} }{dx}\:\:{with}\:{t}>\mathrm{0} \\ $$$$\mathrm{1}.\:{determine}\:{a}\:{explicit}\:{form}\:{of}\:{f}\left({t}\right) \\ $$$$\mathrm{2}.\:{find}\:{also}\:{g}\left({t}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dx} \\ $$$$\mathrm{3}.\:{find}\:{the}\:{values}\:{of}\:{integrals}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{{x}^{\mathrm{2}} \:+\mathrm{3}}{dx}\:\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−\mathrm{3}\left[{x}^{\mathrm{2}} \right]} }{\left({x}^{\mathrm{2}} \:+\mathrm{4}\right)^{\mathrm{2}} }\:{dx}\:. \\ $$