Question Number 192914 by ajfour last updated on 30/May/23

$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)=\left(\mathrm{1}−\frac{{c}}{{x}}\right)^{\mathrm{3}} +\left(\frac{{c}}{{x}}\right)^{\mathrm{3}} \\ $$
Answered by a.lgnaoui last updated on 31/May/23
![x^2 (x^2 −1)=(((x−c)^3 +c^3 )/x^3 ) x^5 (x^2 −1)=x^3 −3cx(x−c) x^4 (x^2 −1)=x^2 −3c(x−c) x^6 −x^4 = ( x−((3c)/2))^2 +((3c^2 )/4) [(x−((3c)/2))+((3c)/2)]^6 =[(x−((3c)/2))+((3c)/2)]^4 +(x−((3c)/2))^2 +((3c^2 )/4) X=x−a avec ((3c)/2)=a (X+a)^6 =(X+a)^4 +X^2 +((ac)/2) (X+a)^6 −(X+a)^4 −[(X+a)−a]^2 +((ac)/2) X+a=Z Z^6 −Z^4 −(Z^2 −2aZ+a^2 )−((ac)/2)=0 Z^6 −Z^4 −Z^2 +2aZ−((a(2a+c))/2) =0 soit Z^6 −Z^4 −Z^2 +3cZ−3c^2 =0 Z=X+a=x x^6 −x^4 −x^2 +3c(x−c)=0 ...........](https://www.tinkutara.com/question/Q192940.png)
$$\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)=\frac{\left(\mathrm{x}−\mathrm{c}\right)^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{3}} } \\ $$$$\:\:\mathrm{x}^{\mathrm{5}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{x}^{\mathrm{3}} −\mathrm{3cx}\left(\mathrm{x}−\mathrm{c}\right) \\ $$$$\:\mathrm{x}^{\mathrm{4}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{x}^{\mathrm{2}} −\mathrm{3c}\left(\mathrm{x}−\mathrm{c}\right) \\ $$$$\mathrm{x}^{\mathrm{6}} −\mathrm{x}^{\mathrm{4}} =\:\:\left(\:\mathrm{x}−\frac{\mathrm{3c}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\left[\left(\mathrm{x}−\frac{\mathrm{3c}}{\mathrm{2}}\right)+\frac{\mathrm{3c}}{\mathrm{2}}\right]^{\mathrm{6}} =\left[\left(\mathrm{x}−\frac{\mathrm{3c}}{\mathrm{2}}\right)+\frac{\mathrm{3c}}{\mathrm{2}}\right]^{\mathrm{4}} +\left(\mathrm{x}−\frac{\mathrm{3c}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\boldsymbol{\mathrm{X}}=\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{avec}}\:\:\:\:\:\:\:\frac{\mathrm{3}\boldsymbol{\mathrm{c}}}{\mathrm{2}}=\boldsymbol{\mathrm{a}} \\ $$$$\:\:\left(\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{a}}\right)^{\mathrm{6}} =\left(\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{a}}\right)^{\mathrm{4}} +\boldsymbol{\mathrm{X}}^{\mathrm{2}} +\frac{\boldsymbol{\mathrm{ac}}}{\mathrm{2}} \\ $$$$\:\:\left(\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{a}}\right)^{\mathrm{6}} −\left(\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{a}}\right)^{\mathrm{4}} −\left[\left(\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{a}}\right)−\boldsymbol{\mathrm{a}}\right]^{\mathrm{2}} +\frac{\boldsymbol{\mathrm{ac}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{Z}} \\ $$$$ \\ $$$$\:\:\:\boldsymbol{\mathrm{Z}}^{\mathrm{6}} −\boldsymbol{\mathrm{Z}}^{\mathrm{4}} −\left(\boldsymbol{\mathrm{Z}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{\mathrm{aZ}}+\boldsymbol{\mathrm{a}}^{\mathrm{2}} \right)−\frac{\boldsymbol{\mathrm{ac}}}{\mathrm{2}}=\mathrm{0} \\ $$$$\:\:\boldsymbol{\mathrm{Z}}^{\mathrm{6}} −\boldsymbol{\mathrm{Z}}^{\mathrm{4}} −\boldsymbol{\mathrm{Z}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{aZ}}−\frac{\boldsymbol{\mathrm{a}}\left(\mathrm{2}\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{c}}\right)}{\mathrm{2}}\:\:=\mathrm{0} \\ $$$$ \\ $$$$\boldsymbol{\mathrm{soit}}\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Z}}^{\mathrm{6}} −\boldsymbol{\mathrm{Z}}^{\mathrm{4}} −\boldsymbol{\mathrm{Z}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{cZ}}−\mathrm{3}\boldsymbol{\mathrm{c}}^{\mathrm{2}} =\mathrm{0} \\ $$$$ \\ $$$$\:\:\:\:\:\:\boldsymbol{\mathrm{Z}}=\boldsymbol{\mathrm{X}}+\boldsymbol{\mathrm{a}}=\boldsymbol{\mathrm{x}}\:\: \\ $$$$ \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{x}}^{\mathrm{6}} −\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{c}}\left(\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{c}}\right)=\mathrm{0} \\ $$$$……….. \\ $$