Question Number 62016 by kiplangatryan89@gmail.com last updated on 14/Jun/19

$${the}\:\mathrm{2}\:{and}\:\mathrm{3}\:{term}\:{of}\:{GP}\:\:{is}\:\mathrm{24} \\ $$$${and}\:\mathrm{12}\left({x}+\mathrm{1}\right).{If}\:{the}\:{sum}\:{of}\:{the}\: \\ $$$${first}\:\mathrm{3}\:{terms}\:{is}\:\mathrm{76}.{Find}\:{the}\:{value} \\ $$$${of}\:{x} \\ $$
Commented by Tony Lin last updated on 14/Jun/19
![r=((12(x+1))/(24))=((x+1)/2) S_3 =a_1 +a_2 +a_3 =((48)/(x+1))+24+12(x+1)=76 ⇒((48)/(x+1))+12(x+1)−52=0 ⇒3(x+1)^2 −13(x+1)+12=0 ⇒[(x+1)−3][3(x+1)−4]=0 ⇒x+1=3 or x+1=(4/3) ⇒x=2 or x=(1/3)](https://www.tinkutara.com/question/Q62017.png)
$${r}=\frac{\mathrm{12}\left({x}+\mathrm{1}\right)}{\mathrm{24}}=\frac{{x}+\mathrm{1}}{\mathrm{2}} \\ $$$${S}_{\mathrm{3}} ={a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} =\frac{\mathrm{48}}{{x}+\mathrm{1}}+\mathrm{24}+\mathrm{12}\left({x}+\mathrm{1}\right)=\mathrm{76} \\ $$$$\:\Rightarrow\frac{\mathrm{48}}{{x}+\mathrm{1}}+\mathrm{12}\left({x}+\mathrm{1}\right)−\mathrm{52}=\mathrm{0}\:\:\:\: \\ $$$$\Rightarrow\mathrm{3}\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{13}\left({x}+\mathrm{1}\right)+\mathrm{12}=\mathrm{0} \\ $$$$\Rightarrow\left[\left({x}+\mathrm{1}\right)−\mathrm{3}\right]\left[\mathrm{3}\left({x}+\mathrm{1}\right)−\mathrm{4}\right]=\mathrm{0} \\ $$$$\Rightarrow{x}+\mathrm{1}=\mathrm{3}\:{or}\:{x}+\mathrm{1}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow{x}=\mathrm{2}\:{or}\:{x}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$