Question Number 137963 by floor(10²Eta[1]) last updated on 08/Apr/21

$$\mathrm{find}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{3}^{\mathrm{x}} −\mathrm{2}^{\mathrm{y}} =\mathrm{7} \\ $$
Commented by PRITHWISH SEN 2 last updated on 08/Apr/21

$$\boldsymbol{\mathrm{x}}=\mathrm{2},\:\boldsymbol{\mathrm{y}}=\mathrm{1} \\ $$
Answered by mindispower last updated on 08/Apr/21
![3^x =7+2^y by using modd[8] 3^(2k+1) ≡3[8] 3^(2k) ≡1[9]⇒3^x ≡{1,3}[8]....1 if y≥3⇒2^y +7≡7[8]...2 (1)&(2)⇒no sulution⇒y≤2 y=0⇒3^x =8⇒x∈R−Z y=1⇒3^x =9⇒x=2 y=2⇒3^x =11⇒x∈R−Z (x^](https://www.tinkutara.com/question/Q137968.png)