Question Number 215550 by MrGaster last updated on 10/Jan/25

$$\boldsymbol{\mathrm{Let}}\:\boldsymbol{{u}}^{\left(\mathrm{1}\right)} ,\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \boldsymbol{\mathrm{s}}.\boldsymbol{\mathrm{t}}.\begin{cases}{\boldsymbol{{u}}_{\boldsymbol{{tt}}} ^{\left(\mathrm{1}\right)} =\left(\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{{i}} ^{\mathrm{2}} }\right)\boldsymbol{{u}}^{\left(\mathrm{1}\right)} }\\{\boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\boldsymbol{\psi}\left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} \right)}\\{\boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\mathrm{0}}\end{cases},\begin{cases}{\boldsymbol{{u}}_{\boldsymbol{{tt}}} ^{\left(\mathrm{2}\right)} =\left(\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} }{\partial\boldsymbol{{x}}_{\mathrm{2}} ^{\mathrm{2}} }+\boldsymbol{{c}}^{\mathrm{2}} \right)\boldsymbol{{u}}^{\left(\mathrm{2}\right)} }\\{\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} \boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\mathrm{0}}\\{\boldsymbol{{u}}_{\boldsymbol{{t}}} ^{\left(\mathrm{2}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\mathrm{0}\right)=\boldsymbol{\psi}\left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} \right)}\end{cases} \\ $$$$\mathrm{prove}:\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\boldsymbol{{t}}\right)=\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{\pi}}\int\int_{\boldsymbol{\xi}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\xi}_{\mathrm{2}} ^{\mathrm{2}} \leq\boldsymbol{{t}}^{\mathrm{2}} } \frac{\boldsymbol{{e}}^{\boldsymbol{\xi}_{\mathrm{2}} \boldsymbol{{c}}} \boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\boldsymbol{\xi}_{\mathrm{1}} \right)\boldsymbol{{d}\xi}_{\mathrm{1}} \boldsymbol{{d}\xi}_{\mathrm{2}} }{\:\sqrt{\boldsymbol{{t}}^{\mathrm{2}} β\boldsymbol{\xi}_{\mathrm{1}} ^{\mathrm{2}} β\boldsymbol{\xi}_{\mathrm{2}} ^{\mathrm{2}} }} \\ $$
Answered by MrGaster last updated on 03/Feb/25
![(x,t)=(1/(2Ο))β«β«_(ΞΎ_1 ^2 +ΞΎ_2 ^2 β€t^2 ) ((e^(ΞΎ2c) Ο(ΞΎ_1 ,ΞΎ_2 )dΞΎ_1 dΞΎ_2 )/( (β(t^2 βΞΎ_1 ^2 βΞΎ_2 ^2 )))) Then,u^((2)) (x_1 ,x_2 ,t)=(β/βt)(tG(x,t)) By Duhamel^, s principle,u^((2)) (x_1 ,x_2 ,t)=β«_0 ^t G(x_1 ,x_2 ,Ο)dΟ Thus,u^((2)) (x_1 ,x_2 ,t)=(1/(2Ο))β«_0 ^t β«β«_(ΞΎ_1 ^2 +ΞΎ_2 ^2 β€(tβΟ)^2 ) ((e^(ΞΎ_2 c) Ο(x_1 ,x_2 ,Ο)dΞΎ_1 dΞΎ_2 )/( (β((tβΟ)^2 βΞΎ_1 ^2 βΞΎ_2 ^2 ))))dΟ u^((2)) (x_1 ,x_2 ,t)=(1/(2π))β«β«_(π_1 ^2 +π_2 ^2 β€t^2 ) ((e^(π_2 c) u^((1)) (x_1 ,x_2 ,π_1 )dπ_1 dπ_2 )/( (β(t^2 βπ_1 ^2 βπ_2 ^2 )))) [Q.E.D]](https://www.tinkutara.com/question/Q216294.png)
$$\left({x},{t}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi}\int\int_{\xi_{\mathrm{1}} ^{\mathrm{2}} +\xi_{\mathrm{2}} ^{\mathrm{2}} \leq{t}^{\mathrm{2}} } \frac{{e}^{\xi\mathrm{2}{c}} \phi\left(\xi_{\mathrm{1}} ,\xi_{\mathrm{2}} \right){d}\xi_{\mathrm{1}} {d}\xi_{\mathrm{2}} }{\:\sqrt{{t}^{\mathrm{2}} β\xi_{\mathrm{1}} ^{\mathrm{2}} β\xi_{\mathrm{2}} ^{\mathrm{2}} }} \\ $$$$\mathrm{Then},{u}^{\left(\mathrm{2}\right)} \left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{t}\right)=\frac{\partial}{\partial{t}}\left({tG}\left({x},{t}\right)\right) \\ $$$$\mathrm{By}\:\mathrm{Duhamel}^{,} \mathrm{s}\:\mathrm{principle},{u}^{\left(\mathrm{2}\right)} \left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{t}\right)=\int_{\mathrm{0}} ^{{t}} {G}\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,\tau\right){d}\tau \\ $$$$\mathrm{Thus},{u}^{\left(\mathrm{2}\right)} \left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,{t}\right)=\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{\mathrm{0}} ^{{t}} \int\int_{\xi_{\mathrm{1}} ^{\mathrm{2}} +\xi_{\mathrm{2}} ^{\mathrm{2}} \leq\left({t}β\tau\right)^{\mathrm{2}} } \frac{{e}^{\xi_{\mathrm{2}} {c}} \psi\left({x}_{\mathrm{1}} ,{x}_{\mathrm{2}} ,\tau\right){d}\xi_{\mathrm{1}} {d}\xi_{\mathrm{2}} }{\:\sqrt{\left({t}β\tau\right)^{\mathrm{2}} β\xi_{\mathrm{1}} ^{\mathrm{2}} β\xi_{\mathrm{2}} ^{\mathrm{2}} }}{d}\tau \\ $$$$\boldsymbol{{u}}^{\left(\mathrm{2}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\boldsymbol{{t}}\right)=\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{\pi}}\int\int_{\boldsymbol{\xi}_{\mathrm{1}} ^{\mathrm{2}} +\boldsymbol{\xi}_{\mathrm{2}} ^{\mathrm{2}} \leq\boldsymbol{{t}}^{\mathrm{2}} } \frac{\boldsymbol{{e}}^{\boldsymbol{\xi}_{\mathrm{2}} \boldsymbol{{c}}} \boldsymbol{{u}}^{\left(\mathrm{1}\right)} \left(\boldsymbol{{x}}_{\mathrm{1}} ,\boldsymbol{{x}}_{\mathrm{2}} ,\boldsymbol{\xi}_{\mathrm{1}} \right)\boldsymbol{{d}\xi}_{\mathrm{1}} \boldsymbol{{d}\xi}_{\mathrm{2}} }{\:\sqrt{\boldsymbol{{t}}^{\mathrm{2}} β\boldsymbol{\xi}_{\mathrm{1}} ^{\mathrm{2}} β\boldsymbol{\xi}_{\mathrm{2}} ^{\mathrm{2}} }} \\ $$$$\left[\mathrm{Q}.\mathrm{E}.\mathrm{D}\right] \\ $$