Menu Close

Question-215782




Question Number 215782 by universe last updated on 18/Jan/25
Answered by mr W last updated on 18/Jan/25
Commented by mr W last updated on 18/Jan/25
Commented by mr W last updated on 18/Jan/25
r=a  l=r sin θ  dS=lrdθ=r^2 sin θ dθ  (S/(16))=∫_0 ^(π/2) r^2  sin θ dθ=r^2   ⇒S=16r^2 =16a^2    ✓
$${r}={a} \\ $$$${l}={r}\:\mathrm{sin}\:\theta \\ $$$${dS}={lrd}\theta={r}^{\mathrm{2}} \mathrm{sin}\:\theta\:{d}\theta \\ $$$$\frac{{S}}{\mathrm{16}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {r}^{\mathrm{2}} \:\mathrm{sin}\:\theta\:{d}\theta={r}^{\mathrm{2}} \\ $$$$\Rightarrow{S}=\mathrm{16}{r}^{\mathrm{2}} =\mathrm{16}{a}^{\mathrm{2}} \:\:\:\checkmark \\ $$
Commented by mr W last updated on 18/Jan/25
dV=l (r cos θ)^2 dθ=r^3 cos^2  θ sin θ dθ  (V/(16))=∫_0 ^(π/2) r^3 cos^2  θ sin θ dθ=(r^3 /3)  ⇒V=((16r^3 )/3)=((16a^3 )/3) ✓
$${dV}={l}\:\left({r}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} {d}\theta={r}^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \:\theta\:\mathrm{sin}\:\theta\:{d}\theta \\ $$$$\frac{{V}}{\mathrm{16}}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {r}^{\mathrm{3}} \mathrm{cos}^{\mathrm{2}} \:\theta\:\mathrm{sin}\:\theta\:{d}\theta=\frac{{r}^{\mathrm{3}} }{\mathrm{3}} \\ $$$$\Rightarrow{V}=\frac{\mathrm{16}{r}^{\mathrm{3}} }{\mathrm{3}}=\frac{\mathrm{16}{a}^{\mathrm{3}} }{\mathrm{3}}\:\checkmark \\ $$
Commented by universe last updated on 18/Jan/25
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by ajfour last updated on 19/Jan/25
https://youtu.be/LAUiOcJsf48?si=N2W3CCYzG3qqjfC-
Commented by mr W last updated on 19/Jan/25
sin 22.5°=(√((1−((√2)/2))/2))=((√(2−(√2)))/2)  r=1+(1/(sin 22.5°))=1+(2/( (√(2−(√2)))))=1+(√(4+2(√2)))
$$\mathrm{sin}\:\mathrm{22}.\mathrm{5}°=\sqrt{\frac{\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}{\mathrm{2}}}=\frac{\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}{\mathrm{2}} \\ $$$${r}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{sin}\:\mathrm{22}.\mathrm{5}°}=\mathrm{1}+\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}−\sqrt{\mathrm{2}}}}=\mathrm{1}+\sqrt{\mathrm{4}+\mathrm{2}\sqrt{\mathrm{2}}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *