Menu Close

Find-the-only-function-that-satisfy-the-expression-below-dy-dx-2-d-2-y-dx-2-




Question Number 215958 by Tawa11 last updated on 22/Jan/25
Find the only function that satisfy  the expression below:         ((dy/dx))^2   =   (d^2 y/dx^2 )
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{only}\:\mathrm{function}\:\mathrm{that}\:\mathrm{satisfy} \\ $$$$\mathrm{the}\:\mathrm{expression}\:\mathrm{below}: \\ $$$$\:\:\:\:\:\:\:\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)^{\mathrm{2}} \:\:=\:\:\:\frac{\mathrm{d}^{\mathrm{2}} \mathrm{y}}{\mathrm{dx}^{\mathrm{2}} } \\ $$
Answered by Ghisom last updated on 23/Jan/25
(y′)^2 =y′′  u=y′  u^2 =u′  u=−(1/(x+C_1 ))     [from experience]  u′=(1/((x+C_1 )^2 ))=u^2   y′=−(1/(x+C_1 )) ⇒  <y=−∫(dx/(x+C_1 ))=C_2 −ln ∣x+C_1 ∣
$$\left({y}'\right)^{\mathrm{2}} ={y}'' \\ $$$${u}={y}' \\ $$$${u}^{\mathrm{2}} ={u}' \\ $$$${u}=−\frac{\mathrm{1}}{{x}+{C}_{\mathrm{1}} }\:\:\:\:\:\left[\mathrm{from}\:\mathrm{experience}\right] \\ $$$${u}'=\frac{\mathrm{1}}{\left({x}+{C}_{\mathrm{1}} \right)^{\mathrm{2}} }={u}^{\mathrm{2}} \\ $$$${y}'=−\frac{\mathrm{1}}{{x}+{C}_{\mathrm{1}} }\:\Rightarrow \\ $$$$<{y}=−\int\frac{{dx}}{{x}+{C}_{\mathrm{1}} }={C}_{\mathrm{2}} −\mathrm{ln}\:\mid{x}+{C}_{\mathrm{1}} \mid \\ $$
Commented by Tawa11 last updated on 03/Feb/25
Thanks sir.  I really apprecuate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{apprecuate}. \\ $$
Answered by mr W last updated on 25/Jan/25
say (dy/dx)=p  p^2 =(dp/dx)  ∫(dp/p^2 )=∫dx  −(1/p)=x+C_1   (dy/dx)=p=−(1/(x+C_1 ))  ∫dy=−∫(dx/(x+C_1 ))  ⇒y=−ln ∣x+C_1 ∣+C_2
$${say}\:\frac{{dy}}{{dx}}={p} \\ $$$${p}^{\mathrm{2}} =\frac{{dp}}{{dx}} \\ $$$$\int\frac{{dp}}{{p}^{\mathrm{2}} }=\int{dx} \\ $$$$−\frac{\mathrm{1}}{{p}}={x}+{C}_{\mathrm{1}} \\ $$$$\frac{{dy}}{{dx}}={p}=−\frac{\mathrm{1}}{{x}+{C}_{\mathrm{1}} } \\ $$$$\int{dy}=−\int\frac{{dx}}{{x}+{C}_{\mathrm{1}} } \\ $$$$\Rightarrow{y}=−\mathrm{ln}\:\mid{x}+{C}_{\mathrm{1}} \mid+{C}_{\mathrm{2}} \\ $$
Commented by Tawa11 last updated on 03/Feb/25
Thanks sir.  I really appreciate.
$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$$$\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *