Menu Close

lim-x-0-1-cos-x-cos-2x-x-2-




Question Number 216032 by efronzo1 last updated on 26/Jan/25
  lim_(x→0)  ((1−cos x (√(cos 2x)))/x^2 ) =?
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}\:\sqrt{\mathrm{cos}\:\mathrm{2x}}}{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$
Answered by mr W last updated on 26/Jan/25
cos x∼1−(x^2 /2)  (√(cos 2x))∼1−x^2   ((1−cos x(√(cos 2x)))/x^2 )  ∼((1−(1−(x^2 /2))(1−x^2 ))/x^2 )  ∼((((1/2)+1)x^2 )/x^2 )  →(3/2) ✓
$$\mathrm{cos}\:{x}\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\sim\mathrm{1}−{x}^{\mathrm{2}} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\:{x}\sqrt{\mathrm{cos}\:\mathrm{2}{x}}}{{x}^{\mathrm{2}} } \\ $$$$\sim\frac{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\mathrm{1}−{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} } \\ $$$$\sim\frac{\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right){x}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$$\rightarrow\frac{\mathrm{3}}{\mathrm{2}}\:\checkmark \\ $$
Answered by golsendro last updated on 26/Jan/25
= lim_(x→0)  ((1−cos x)/x^2 ) −lim_(x→0) ((((√(cos x))−1)/x^2 ))cos x   = (1/2) −lim_(x→0)  ((cos x−1)/(x^2 ((√(cos x))+1 )))   = (1/2) + 1 = (3/2)
$$=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\:−\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{cos}\:\mathrm{x}}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)\mathrm{cos}\:\mathrm{x} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:−\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{x}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \left(\sqrt{\mathrm{cos}\:\mathrm{x}}+\mathrm{1}\:\right)} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{1}\:=\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *